Với a,b là hai số tự nhiên bất kì , số ab. ( a + b ) luôn là
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử : a là số chẵn, b là số lẻ
Ta có : a . b = chẵn . lẻ = chẵn → Cho dù a + b là số nào đi nữa thì ab ( a+ b ) vẫn là số chẵn ( vì ab = số chẵn )
Giả sử : a là số lẻ, b là số lẻ
Ta có : ( a + b ) = lẻ + lẻ = chẵn → Cho dù ab là số nào đi nữa thì ab ( a+ b ) vẫn là số chẵn ( vì ( a + b ) = số chẵn )
Bonking thiếu nha bạn
Còn 2 trường hợp nữa
Nếu a là số lẻ b là số chẵn
Thì ab là số chẵn => ab(a + b) cũng là số chẵn
Nếu a là số chẵn , b là số lẻ thì mk chịu
a, Ta có:
Đặt a=2k, b=2k+1
Suy ra ab(a+b)=2k(2k+1)(2k+2k+1) chia hết cho 2
Đặt a=2k+1; b=2k
Suy ra ab(a+b)=(2k+1)2k(2k+2k+1) chia hết cho 2
Đặt a=2k;b=2k
Suy ra ab(a+b)=2k.2k.4k chia hết cho 2
Đặt a=2k+1;b=2k+1
Suy ra ab(a+b)=(2k+1)(2k+1)(2k+1+2k+1)=2(2k+1)(2k+1)(2k+1) chia hết cho 2
Vậy ab(a+b) chia hết cho 2 với mọi a;b
Câu khác tương tự
câu c) ab+ba=10a+b+10b+a
=11a+11b
=11(a+b)
vì 11 chia hết cho 11 nên 11(a+b) chia hết cho 11
vậy ab+ ba chia hết cho 11
1/
Nếu $a,b$ cùng tính chất chẵn lẻ thì $a+b$ chẵn
$\Rightarrow ab(a+b)\vdots 2$
Nếu $a,b$ khác tính chất chẵn lẻ thì 1 trong 2 số $a,b$ là số chẵn
$\Rightarrow ab(a+b)\vdots 2$
Vậy tóm lại, $ab(a+b)\vdots 2$ với $a,b$ là số tự nhiên bất kỳ.
2/
$n^2+n-1=n(n+1)-1$
Vì $n,n+1$ là 2 số tự nhiên liên tiếp nên trong 2 số có 1 số chẵn, 1 số lẻ.
$\Rightarrow n(n+1)\vdots 2$
Mà $1\not\vdots 2$
$\Rightarrow n^2+n-1=n(n+1)-1\not\vdots 2$
hợp số hoặc là số chẵn
Với a;b là 2 số tự nhiên bất kì , số ab.(a+b) luôn là hợp số hoặc số chẵn.