Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có:
Đặt a=2k, b=2k+1
Suy ra ab(a+b)=2k(2k+1)(2k+2k+1) chia hết cho 2
Đặt a=2k+1; b=2k
Suy ra ab(a+b)=(2k+1)2k(2k+2k+1) chia hết cho 2
Đặt a=2k;b=2k
Suy ra ab(a+b)=2k.2k.4k chia hết cho 2
Đặt a=2k+1;b=2k+1
Suy ra ab(a+b)=(2k+1)(2k+1)(2k+1+2k+1)=2(2k+1)(2k+1)(2k+1) chia hết cho 2
Vậy ab(a+b) chia hết cho 2 với mọi a;b
Câu khác tương tự
câu c) ab+ba=10a+b+10b+a
=11a+11b
=11(a+b)
vì 11 chia hết cho 11 nên 11(a+b) chia hết cho 11
vậy ab+ ba chia hết cho 11
1/
Nếu $a,b$ cùng tính chất chẵn lẻ thì $a+b$ chẵn
$\Rightarrow ab(a+b)\vdots 2$
Nếu $a,b$ khác tính chất chẵn lẻ thì 1 trong 2 số $a,b$ là số chẵn
$\Rightarrow ab(a+b)\vdots 2$
Vậy tóm lại, $ab(a+b)\vdots 2$ với $a,b$ là số tự nhiên bất kỳ.
2/
$n^2+n-1=n(n+1)-1$
Vì $n,n+1$ là 2 số tự nhiên liên tiếp nên trong 2 số có 1 số chẵn, 1 số lẻ.
$\Rightarrow n(n+1)\vdots 2$
Mà $1\not\vdots 2$
$\Rightarrow n^2+n-1=n(n+1)-1\not\vdots 2$
Gọi d là ƯC của a và ab+4
=> a chia hết cho d, ab+4 chia hết cho d => 4 chia hết cho d => d = { 1, 2, 4}
nếu d=2 thì a chia hết cho 2 , ab+4 chia hết cho 2 ( vô lí vì a là số lẻ)
Tương tự d cũng ko thể bằng 4
Vậy d=1 => a và ab+4 là các số nguyên tố cùng nhau (ĐPCM)
Lời giải:
Gọi $d=ƯCLN(12n+1, 30n+2)$
$\Rightarrow 12n+1\vdots d; 30n+2\vdots d$
$\Rightarrow 5(12n+1)-2(30n+2)\vdots d$
$\Rightarrow 1\vdots d\Rightarrow d=1$
$\Rightarrow ƯCLN(12n+1, 30n+2)=1$
$\Rightarrow 12n+1, 30n+2$ là hai số nguyên tố cùng nhau.
Trường hợp 1: Nếu a và b là số chẵn:
thì ab là số chẵn và a + b là số chẵn
Suy ra: ab * ( a + b) là số chẵn
Trường hợp 2: Nếu a và b là số lẻ
thì ab là số lẻ và a + b là số lẻ
Suy ra: ab * ( a + b) là số chẵn
Trường hợp 3: Nếu a là số chẵn, b là số lẻ
thì ab là số lẻ và a + b là số lẻ
Suy ra: ab * ( a + b) là số chẵn
Trường hợp 4: Nếu a là số lẻ, b là số chẵn
thì ab là số chẵn và a + b là số lẻ
Suy ra: ab * ( a + b) là số chẵn
Vậy với a, b là số tự nhiên bất kì, ta có: ab *( a + b ) luôn luôn có kết quả là số chẵn
hợp số hoặc là số chẵn
Với a;b là 2 số tự nhiên bất kì , số ab.(a+b) luôn là hợp số hoặc số chẵn.