Tìm hai số nguyên tố p, biết: p + 20; p + 10 cùng là số nguyên tố
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a; 19,29,59
b. 889=887+3 (887 nguyen to)
c.2001.2002.2003.2004 co tan cung la 4
vay 2001.2002.2003.2004 +1 co tan cung la 5
vay (c) luon chia het cho 5= hop so
Số thứ tự 16:
+Tên nguyên tố: sulfur
+Số hiệu nguyên tử = số thứ tự = 16
+Kí hiệu hóa học: S
+Khối lượng nguyên tử: M=32
-Số thứ tự 20:
+Tên nguyên tố: calcium
+Số hiệu nguyên tử = số thứ tự = 20
+Kí hiệu hóa học: Ca
+Khối lượng nguyên tử: M = 40
Gọi số cần tìm là p(p nguyên tố)
Dễ thấy p>2 nên p lẻ
Vì p vừa là tổng, vừa là hiệu của 2 số nguyên tố nên 1 số phải chẵn còn số kia lẻ. Số chẵn là 2
Như vậy p=a+2=b-2(a,b nguyên tố)
Mà a=p-2;p;b=p+2 là 3 số lẻ liên tiếp nên có 1 số chia hết cho 3.vậy phải có 1 số bằng 3
+)a=3=>p=5;b=7(thoả mãn)
+)p=3=>a=1( ko là số nguyên tố)
+)b=3=>p=1( ko là số nguyên tố)
Vậy số nguyên tố cần tìm là 5
Gọi a ,b,c ,d,e là các số nguyên tố sao cho a=b+c=d-e giả sử ( b lớn hơn hoặc bằng c)
Chứng tỏ rằng c=e=2 ,nên b,a,d là 3 số lẻ liên tiếp ,sau đó chứng tỏ b=3
Số nguyên tố phải tìm là 5 (5= 3+2 =7-2)
Chúc bạn học tốt , **** mk nha
Dễ thấy p>2 nên p lẻ
Vì p vừa là tổng, vừa là hiệu của 2 số nguyên tố nên 1 số phải chẵn còn số kia lẻ.Số chẵn là 2
Như vậy p=a+2=b-2(a,b là các số nguyên tố)
Mà a=p-2;p;b=p+2 là 3 số lẻ liên tiếp nên có 1 số chia hết cho 3.Vậy phải có 1 số bằng 3.
Nếu a=3=>p=5;b=7
Nếu p=3 =>a=1(ko là số nguyên tố)
Nếu b=3 =>p=1(ko là số nguyên tố)
Vậy số nguyên tố cần tìm là 5
Sửa đề: lớn hơn 20
Ta có: P={2;3;5;7;11;13;19;23;29;31;37;41;43;47;53;59;61;67;71;73;79;83;89;97;101;...}
=>Hai số nguyên tố sinh đôi lớn hơn 20 và nhỏ hơn 100 là 41 và 43
p=1 va 7
ta xét các số nguyên tố p như sau:
+) xét p=2 => p+10=12 là hợp số (loại.)
+) xét p=3 => p+10=13
p+20=23 (đều là số nuyên tố, chọn)
+) xét các số nguyên tố p > 3 => khi chia p cho 3 ta có 2 dạng: p=3k+1 hoặc p=3k+2 (kϵN*)
- nếu p=3k+1 => p+20=3k+1+20=3k+21 chia hết cho 3 và lớn hơn 3.
=> p+20 là hợp số (trái với đề, loại)
- nếu p=3k+2 => p+10=3k+2+10=3k+12 chia hết cho 3 và lớn hơn 3.
=> p+10 là hợp số (trái với đề, loại)
vậy p=3.