K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2016

Ta có hình vẽ: A B C D M 1 2 3 4 1 2

20 tháng 12 2016

a) Xét ΔAMC và ΔDMB, có:
MB = MC (M là trung điểm của BC)

góc BMD = góc CMA (hai góc đối đỉnh)
MA = MD (gt)
=> ΔAMC = ΔDMB (c.g.c)

b) Ta có: ΔAMC = ΔDMB (chứng minh ở câu a)
=> góc MAC = góc MDB (hai góc tương ứng)
=> AC//DB (có hai góc bằng nhau ở vị trí so le trong)

18 tháng 12 2017

A B C M D

a/ Xét \(\Delta AMC;\Delta DMB\) có :

\(\left\{{}\begin{matrix}AM=MD\\\widehat{BMD}=\widehat{AMC}\\MB=MC\end{matrix}\right.\)

\(\Leftrightarrow\Delta AMC=\Delta DMB\left(c-g-c\right)\)

b, Ta có :

\(\Delta AMC=\Delta DMB\left(cmt\right)\)

\(\Leftrightarrow AC=DB\)

19 tháng 12 2017

thiếu phần c

2 tháng 1 2018

a Xét \(\Delta AMC\)\(\Delta DMB\) có :

BM = MC (gt)

MD = MA (gt)

\(\widehat{BMD}=\widehat{CMA}\) (đối đỉnh)

\(\Rightarrow\Delta AMC=\Delta DMB\) (c . g . c)

b Vì \(\Delta AMC=\Delta DMB\)

\(\Rightarrow\) BD = AC

2 tháng 1 2018

Hình bn tự vẽ nha

a) xét 2 tam giác AMC và tam giác DMB có

AM = MD ( GT)

BM= MC (GT)

góc BMD = góc AMC ( đối đỉnh )

==. 2 tam giác = nhau theo trường hợp ( c-g-c )

b) từ phần a ==> AC= BD (2 cạnh tương ứng)

c) ta có M là tung điểm của BC ==> AM là đường trung tuyến của tam giác ABC mà tam giác ABC vuông ==> đường trung tuyến = \(\dfrac{1}{2}\) cạnh huyền ==> BM=AM=MC

===>tam giác BMA và tam giác CMA cân

tam giác BMA cân ==>góc MBA = BAM ( 2 góc đấy trong tam giác cân )

và tam giác CMA cân cũng tương tự ==> góc MAC=ACM

mà BAM +CAM= \(90^o\) ==> BAM=CAM = \(45^o\)

có2 tam giác BMA và CMA cân == góc ABM =ACM = \(45^o\) (1)

có góc DBM=ACM 2 góc tương ứng ở phần a ==>góc ACM= DBM = \(45^o\) (2)

từ (1) và (2) ==> ABM+DBM=\(90^o\)

hay \(AB\perp BD\)

2 tháng 3 2018

A B C M D

a) Xét \(\Delta AMC,\Delta DMB\) có :

\(AM=DM\left(gt\right)\)

\(\widehat{AMC}=\widehat{DMB}\) (đối đỉnh)

\(BM=CM\) (M là trung điểm của BC)

=> \(\Delta AMC=\Delta DMB\left(c.g.c\right)\)

b) Xét \(\Delta ABC,\Delta BDA\) có :

\(AB:Chung\)

\(\widehat{ACB}=\widehat{BDA}\) (do \(\Delta AMC=\Delta DMB\))

\(BD=AC\) (\(\Delta AMC=\Delta DMB\))

=> \(\Delta ABC=\Delta BDA\left(c.g.c\right)\)

=> \(\widehat{CAB}=\widehat{ABD}=90^{^O}\) (2 góc tương ứng)

Vậy \(\widehat{ABD}=90^o\)

c) Trong tam giác vuông, trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền (*)

Áp dụng (*) ta có :

\(AM=\dfrac{1}{2}BC\)

=> đpcm.

A B M C D 1 1 Hình minh họa
Chứng minh :
a) Xét △AMC và △DMB có :
AM = DM ( gt )
\(\widehat{AMC}=\widehat{DMB}\) ( đối đỉnh )
MC = MB ( gt )
⇒ △AMC = △DMB ( c.g.c )
⇒ AC = DB ( tương ứng )
\(\Rightarrow\widehat{C1}=\widehat{B1}\) ( tương ứng )
b ) \(\text{ Có }\widehat{C1}=\widehat{B1}\left(cmt\right)\)
\(\widehat{C1}\text{ và }\widehat{B1}\) là hai góc so le trong
⇒ BD // AC ( dấu hiệu nhận biết )
\(\Rightarrow\widehat{DBA}+\widehat{BAC}=180^o\) ( hai góc trong cùng phía )
\(\Rightarrow\widehat{DBA}=180^o-90^o\)
\(\Rightarrow\widehat{DBA}=90^o\)
c ) Xét △DBA vuông tại B và △CAB vuông tại A có :
BD = AC ( cmt )
AB - cạnh chung
⇒ △DBA = △CAB ( cgv - cgv )
⇒ DA = CB ( tương ứng )
\(AM=MD=\dfrac{1}{2}AD\)
\(\Rightarrow AM=\dfrac{1}{2}BC\)

Câu 4. Cho tam giác ABC có AB = 9cm, AC = 12cm, BC = 15cm, gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA. a) Chứng minh tam giác ABC vuông tại A. b) CM: \(\Delta MAB\) = \(\Delta MDC\). c) Gọi K là trung điểm của AC chứng minh KD = KB. d) KD cắt BC tịa I, KB cắt AD tại N chứng minh \(\Delta KNI\) cân. Câu 5. Cho tam giác ABC vuông ở A , có C = 300 . Gọi M là trung điểm của BC, trên tia đối của...
Đọc tiếp

Câu 4. Cho tam giác ABC có AB = 9cm, AC = 12cm, BC = 15cm, gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA. a) Chứng minh tam giác ABC vuông tại A. b) CM: \(\Delta MAB\) = \(\Delta MDC\). c) Gọi K là trung điểm của AC chứng minh KD = KB. d) KD cắt BC tịa I, KB cắt AD tại N chứng minh \(\Delta KNI\) cân.

Câu 5. Cho tam giác ABC vuông ở A , có C = 300 . Gọi M là trung điểm của BC, trên tia đối của tia MA lấy điểm D sao cho MD = MA. a/ Chứng minh : AB = CD. b/ Chứng minh: \(\Delta BAC=\Delta DAC\). c/ Chứng minh : \(\Delta ABM\) là tam giác đều.

Câu 6. Cho tam giác ABC vuông ở B, gọi M là trung điểm của BC . Trên tia đối của tia MA lấy điểm E sao cho ME = MA. Chứng minh: a/ \(\Delta ABM=\Delta ECM\). b/ AC > CE. c/ góc BAM>góc MAC

4
1 tháng 5 2020

(tự vẽ hình )

câu 4:

 a) có AB2 + AC= 225

BC= 225

Pytago đảo => \(\Delta ABC\)vuông tại A

b) Xét \(\Delta MAB\)và \(\Delta MDC\)

MA = MD (gt)

BM = BC ( do M là trung điểm của BC ) 

\(\widehat{AMB}=\widehat{CMD}\)( hai góc đối đỉnh )

=> \(\Delta MAB\)\(\Delta MDC\) (cgc)

c) vì \(\Delta MAB\)\(\Delta MDC\)

=> \(\hept{\begin{cases}AB=DC\\\widehat{MAB}=\widehat{MDC}\end{cases}}\)

=> AB// DC

lại có AB \(\perp\)AC => DC \(\perp\)AC => \(\Delta KCD\)vuông tại C

Xét \(\Delta\) vuông ABK và \(\Delta\)vuông KCD:

AB =CD (cmt)

AK = KC ( do k là trung điểm của AC )

=> \(\Delta\)vuông AKB = \(\Delta\)vuông CKD (cc)

=> KB = KD

d. do KB = KD => \(\Delta KBD\)cân tại K

=> \(\widehat{KBD}=\widehat{KDB}\)(1)

có \(\Delta ADC\)vuông tại C => \(AD=\sqrt{AC^2+DC^2}=15\)

=> MD = 7.5

mà MB = 7.5

=> MB = MD 

=> \(\Delta MBD\)cân tại M

=> \(\widehat{MBD}=\widehat{MDB}\)(2)

Từ (1) và (2) => \(\widehat{KBD}-\widehat{MBD}=\widehat{KDB}-\widehat{MDB}\)hay \(\widehat{KBM}=\widehat{KDM}\)

Xét \(\Delta KBI\)và \(\Delta KDN\)có:

\(\widehat{KBI}=\widehat{KDN}\)(cmt)

\(\widehat{KBD}\)chung

KD =KB (cmt) 

=> \(\Delta KBI\)\(\Delta KDN\)(gcg)

=> KN =KI 

=. đpcm

1 tháng 5 2020

câu 5: 

a) Xét \(\Delta ABM\)và \(\Delta MDC\):

MA=MD(gt)

MB=MC (M là trung điểm của BC)

\(\widehat{BMA}=\widehat{DMC}\)( đối đỉnh )

=> \(\Delta BMA=\Delta CMD\)(cgc)

b) Xét \(\Delta\)vuông ABC 

có AM là đường trung tuyến của tam giác 

=> \(AM=\frac{1}{2}BC\)mà \(BM=MC=\frac{1}{2}BC\)(do M là trung điểm của BC )

=> AM = BM = MC 

có MA =MD => AM = MD =MB =MC

=> BM +MC = AM +MD hay BC =AD

Xét \(\Delta BAC\)và \(\Delta DCA\)

AB =DC

AC chung

BC =DC

=> \(\Delta BAC\)\(\Delta DCA\)(ccc)

c. Xét \(\Delta ABM\)

BM=AM

\(\widehat{ABM}\)= 600

=> đpcm

a: Xét ΔAMC và ΔDMB có

MA=MD

\(\widehat{AMC}=\widehat{DMB}\)(hai góc đối đỉnh)

MC=MB

Do đó: ΔAMC=ΔDMB

b: Xét ΔAMB và ΔDMC có

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)

MB=MC

Do đó: ΔAMB=ΔDMC

c: Ta có: ΔAMB=ΔDMC

=>AB=DC

Ta có: ΔAMB=ΔDMC

=>\(\widehat{MAB}=\widehat{MDC}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AB//CD

d: ta có: ΔAMC=ΔDMB

=>AC=DB

Ta có: ΔAMC=ΔDMB

=>\(\widehat{MAC}=\widehat{MDB}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AC//BD

e: Xét ΔKDM và ΔHAM có

KD=HA

\(\widehat{KDM}=\widehat{HAM}\)

DM=AM

Do đó: ΔKDM=ΔHAM

=>\(\widehat{KMD}=\widehat{HMA}\)

mà \(\widehat{KMD}+\widehat{KMA}=180^0\)(hai góc kề bù)

nên \(\widehat{HMA}+\widehat{KMA}=180^0\)

=>H,M,K thẳng hàng

19 tháng 12 2020

CM: a) Xét tam giác AME và tam giác DMB

có ME = MB (gt)

 góc AME = góc BMD (đối đỉnh)

MA = MD (gt)

=> tam giác AME = tam giác DMB (c.g.c)

=> góc E = góc MBD (hai góc tương ứng)

Mà góc E và góc MBD ở vị trí so le trong

=> AE // BC (1)

b) Xét tam giác AEM và tam giác DCM 

có MA = MD(gt)

  góc EMA = góc DMC (đối đỉnh)

ME = MC (gt)

=> tam giác AEM = tam giác DCM (c.g.c)

=> góc F = góc MCD (hai góc tương ứng)

Mà góc F và góc MCD ở vị trí so le trong 

=> AF // BC (2)

Từ (1) và (2) suy ra AF \equiv≡AE ( theo tiên đề ơ - clit)

=> F,A,E thẳng hàng

c) Xét tam giác FMB và tam giác CME

có MF = MC (gt)

góc FMB = góc EMC (đối đỉnh)

 BM = EM (gt)

=> tam giác FMB = tam giác CME (c.g.c)

=> góc BFM = góc MCE (hai góc tương ứng)

mà góc BFM và góc MCE ở vị trí so le trong

=> BF // CE

28 tháng 12 2023

δγΣαγηθλΣϕΩβΔ

28 tháng 12 2023

Xét △AMD và △DMC

   AB=AC(giả thuyết)

   Cạnh AM là cạnh chung 

   BM= CM ( M là trung điểm của cạnh BC)

=> △AMD=△DMC

Sorry bạn nhé mk chỉ bt làm câu a thui ☹
   

Bn tự vẽ hình nhé!

a) Xét ΔAMC và ΔDMB có:

MB = MC ( M là trung điểm của BC )

∠AMC = ∠DMB ( 2 góc đối đỉnh )

MA = MD ( gt )

=> ΔAMC = ΔDMB ( c.g.c )

b) Vì ΔAMC = ΔDMB ( cmt )

=> ∠DAC = ∠ADB ( 2 góc tương ứng )

=> AC // BD ( 2 góc so le trong bằng nhau )

Mà AC ⊥ AB ( ∠ BAC = 900 )

=> AB ⊥ BD ( định lý từ vuông góc đến song song )

=> ∠ ABD = 900

c) Xét Δ ABC và ΔBAD có :

AB chung

∠BAC = ∠ ABD ( = 900)

AC = BC ( ΔAMC = ΔDMB ( cmt )

=> Δ ABC = ΔBAD ( c.g.c)

=> BC = AD ( 2 cạnh t/ứng )

Ta có : MA = MD ( gt )

Mà M nằm giữa 2 điểm A và D

=> M là t/đ của AD

=> AM = 1/2AD

Mà AD = BC ( cmt )

=> AM= 1/2 BC ( đcm )

8 tháng 11 2016

a) Vì M là trung điểm của BC 

=> BM = CM

Xét tam giác ABM và tam giác DCM có:

     AM = DM(gt) 

góc AMB = DMC (đối đỉnh)

  VM = CM (cmt)

=> đpcm

b) Xét tam giác BDM và tam giác CMA có:

       BM = CM (cmt)

góc BMD = CMA (đối đỉnh)

     DM = AM (gt)

=> tam giác BDM = tam giác CMA (cgc)

=> BD = AC( 2 cạnh tương ứng)

góc ACM = góc DBM (2 góc tương ứng)

mà 2 góc này ở vị trí so le trong của 2 đường thẳng BD và AC

=> BD//AC