Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Xét \(\Delta AMC;\Delta DMB\) có :
\(\left\{{}\begin{matrix}AM=MD\\\widehat{BMD}=\widehat{AMC}\\MB=MC\end{matrix}\right.\)
\(\Leftrightarrow\Delta AMC=\Delta DMB\left(c-g-c\right)\)
b, Ta có :
\(\Delta AMC=\Delta DMB\left(cmt\right)\)
\(\Leftrightarrow AC=DB\)
a Xét \(\Delta AMC\) và \(\Delta DMB\) có :
BM = MC (gt)
MD = MA (gt)
\(\widehat{BMD}=\widehat{CMA}\) (đối đỉnh)
\(\Rightarrow\Delta AMC=\Delta DMB\) (c . g . c)
b Vì \(\Delta AMC=\Delta DMB\)
\(\Rightarrow\) BD = AC
Hình bn tự vẽ nha
a) xét 2 tam giác AMC và tam giác DMB có
AM = MD ( GT)
BM= MC (GT)
góc BMD = góc AMC ( đối đỉnh )
==. 2 tam giác = nhau theo trường hợp ( c-g-c )
b) từ phần a ==> AC= BD (2 cạnh tương ứng)
c) ta có M là tung điểm của BC ==> AM là đường trung tuyến của tam giác ABC mà tam giác ABC vuông ==> đường trung tuyến = \(\dfrac{1}{2}\) cạnh huyền ==> BM=AM=MC
===>tam giác BMA và tam giác CMA cân
tam giác BMA cân ==>góc MBA = BAM ( 2 góc đấy trong tam giác cân )
và tam giác CMA cân cũng tương tự ==> góc MAC=ACM
mà BAM +CAM= \(90^o\) ==> BAM=CAM = \(45^o\)
có2 tam giác BMA và CMA cân == góc ABM =ACM = \(45^o\) (1)
có góc DBM=ACM 2 góc tương ứng ở phần a ==>góc ACM= DBM = \(45^o\) (2)
từ (1) và (2) ==> ABM+DBM=\(90^o\)
hay \(AB\perp BD\)
a) Xét \(\Delta AMC,\Delta DMB\) có :
\(AM=DM\left(gt\right)\)
\(\widehat{AMC}=\widehat{DMB}\) (đối đỉnh)
\(BM=CM\) (M là trung điểm của BC)
=> \(\Delta AMC=\Delta DMB\left(c.g.c\right)\)
b) Xét \(\Delta ABC,\Delta BDA\) có :
\(AB:Chung\)
\(\widehat{ACB}=\widehat{BDA}\) (do \(\Delta AMC=\Delta DMB\))
\(BD=AC\) (\(\Delta AMC=\Delta DMB\))
=> \(\Delta ABC=\Delta BDA\left(c.g.c\right)\)
=> \(\widehat{CAB}=\widehat{ABD}=90^{^O}\) (2 góc tương ứng)
Vậy \(\widehat{ABD}=90^o\)
c) Trong tam giác vuông, trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền (*)
Áp dụng (*) ta có :
\(AM=\dfrac{1}{2}BC\)
=> đpcm.
Chứng minh :
a) Xét △AMC và △DMB có :
AM = DM ( gt )
\(\widehat{AMC}=\widehat{DMB}\) ( đối đỉnh )
MC = MB ( gt )
⇒ △AMC = △DMB ( c.g.c )
⇒ AC = DB ( tương ứng )
\(\Rightarrow\widehat{C1}=\widehat{B1}\) ( tương ứng )
b ) \(\text{ Có }\widehat{C1}=\widehat{B1}\left(cmt\right)\)
Mà \(\widehat{C1}\text{ và }\widehat{B1}\) là hai góc so le trong
⇒ BD // AC ( dấu hiệu nhận biết )
\(\Rightarrow\widehat{DBA}+\widehat{BAC}=180^o\) ( hai góc trong cùng phía )
\(\Rightarrow\widehat{DBA}=180^o-90^o\)
\(\Rightarrow\widehat{DBA}=90^o\)
c ) Xét △DBA vuông tại B và △CAB vuông tại A có :
BD = AC ( cmt )
AB - cạnh chung
⇒ △DBA = △CAB ( cgv - cgv )
⇒ DA = CB ( tương ứng )
Mà \(AM=MD=\dfrac{1}{2}AD\)
\(\Rightarrow AM=\dfrac{1}{2}BC\)
(tự vẽ hình )
câu 4:
a) có AB2 + AC2 = 225
BC2 = 225
Pytago đảo => \(\Delta ABC\)vuông tại A
b) Xét \(\Delta MAB\)và \(\Delta MDC\)
MA = MD (gt)
BM = BC ( do M là trung điểm của BC )
\(\widehat{AMB}=\widehat{CMD}\)( hai góc đối đỉnh )
=> \(\Delta MAB\)= \(\Delta MDC\) (cgc)
c) vì \(\Delta MAB\)= \(\Delta MDC\)
=> \(\hept{\begin{cases}AB=DC\\\widehat{MAB}=\widehat{MDC}\end{cases}}\)
=> AB// DC
lại có AB \(\perp\)AC => DC \(\perp\)AC => \(\Delta KCD\)vuông tại C
Xét \(\Delta\) vuông ABK và \(\Delta\)vuông KCD:
AB =CD (cmt)
AK = KC ( do k là trung điểm của AC )
=> \(\Delta\)vuông AKB = \(\Delta\)vuông CKD (cc)
=> KB = KD
d. do KB = KD => \(\Delta KBD\)cân tại K
=> \(\widehat{KBD}=\widehat{KDB}\)(1)
có \(\Delta ADC\)vuông tại C => \(AD=\sqrt{AC^2+DC^2}=15\)
=> MD = 7.5
mà MB = 7.5
=> MB = MD
=> \(\Delta MBD\)cân tại M
=> \(\widehat{MBD}=\widehat{MDB}\)(2)
Từ (1) và (2) => \(\widehat{KBD}-\widehat{MBD}=\widehat{KDB}-\widehat{MDB}\)hay \(\widehat{KBM}=\widehat{KDM}\)
Xét \(\Delta KBI\)và \(\Delta KDN\)có:
\(\widehat{KBI}=\widehat{KDN}\)(cmt)
\(\widehat{KBD}\)chung
KD =KB (cmt)
=> \(\Delta KBI\)= \(\Delta KDN\)(gcg)
=> KN =KI
=. đpcm
câu 5:
a) Xét \(\Delta ABM\)và \(\Delta MDC\):
MA=MD(gt)
MB=MC (M là trung điểm của BC)
\(\widehat{BMA}=\widehat{DMC}\)( đối đỉnh )
=> \(\Delta BMA=\Delta CMD\)(cgc)
b) Xét \(\Delta\)vuông ABC
có AM là đường trung tuyến của tam giác
=> \(AM=\frac{1}{2}BC\)mà \(BM=MC=\frac{1}{2}BC\)(do M là trung điểm của BC )
=> AM = BM = MC
có MA =MD => AM = MD =MB =MC
=> BM +MC = AM +MD hay BC =AD
Xét \(\Delta BAC\)và \(\Delta DCA\)
AB =DC
AC chung
BC =DC
=> \(\Delta BAC\)= \(\Delta DCA\)(ccc)
c. Xét \(\Delta ABM\)
BM=AM
\(\widehat{ABM}\)= 600
=> đpcm
a: Xét ΔAMC và ΔDMB có
MA=MD
\(\widehat{AMC}=\widehat{DMB}\)(hai góc đối đỉnh)
MC=MB
Do đó: ΔAMC=ΔDMB
b: Xét ΔAMB và ΔDMC có
MA=MD
\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)
MB=MC
Do đó: ΔAMB=ΔDMC
c: Ta có: ΔAMB=ΔDMC
=>AB=DC
Ta có: ΔAMB=ΔDMC
=>\(\widehat{MAB}=\widehat{MDC}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AB//CD
d: ta có: ΔAMC=ΔDMB
=>AC=DB
Ta có: ΔAMC=ΔDMB
=>\(\widehat{MAC}=\widehat{MDB}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AC//BD
e: Xét ΔKDM và ΔHAM có
KD=HA
\(\widehat{KDM}=\widehat{HAM}\)
DM=AM
Do đó: ΔKDM=ΔHAM
=>\(\widehat{KMD}=\widehat{HMA}\)
mà \(\widehat{KMD}+\widehat{KMA}=180^0\)(hai góc kề bù)
nên \(\widehat{HMA}+\widehat{KMA}=180^0\)
=>H,M,K thẳng hàng
CM: a) Xét tam giác AME và tam giác DMB
có ME = MB (gt)
góc AME = góc BMD (đối đỉnh)
MA = MD (gt)
=> tam giác AME = tam giác DMB (c.g.c)
=> góc E = góc MBD (hai góc tương ứng)
Mà góc E và góc MBD ở vị trí so le trong
=> AE // BC (1)
b) Xét tam giác AEM và tam giác DCM
có MA = MD(gt)
góc EMA = góc DMC (đối đỉnh)
ME = MC (gt)
=> tam giác AEM = tam giác DCM (c.g.c)
=> góc F = góc MCD (hai góc tương ứng)
Mà góc F và góc MCD ở vị trí so le trong
=> AF // BC (2)
Từ (1) và (2) suy ra AF \equiv≡AE ( theo tiên đề ơ - clit)
=> F,A,E thẳng hàng
c) Xét tam giác FMB và tam giác CME
có MF = MC (gt)
góc FMB = góc EMC (đối đỉnh)
BM = EM (gt)
=> tam giác FMB = tam giác CME (c.g.c)
=> góc BFM = góc MCE (hai góc tương ứng)
mà góc BFM và góc MCE ở vị trí so le trong
=> BF // CE
Xét △AMD và △DMC
AB=AC(giả thuyết)
Cạnh AM là cạnh chung
BM= CM ( M là trung điểm của cạnh BC)
=> △AMD=△DMC
Sorry bạn nhé mk chỉ bt làm câu a thui ☹
Bn tự vẽ hình nhé!
a) Xét ΔAMC và ΔDMB có:
MB = MC ( M là trung điểm của BC )
∠AMC = ∠DMB ( 2 góc đối đỉnh )
MA = MD ( gt )
=> ΔAMC = ΔDMB ( c.g.c )
b) Vì ΔAMC = ΔDMB ( cmt )
=> ∠DAC = ∠ADB ( 2 góc tương ứng )
=> AC // BD ( 2 góc so le trong bằng nhau )
Mà AC ⊥ AB ( ∠ BAC = 900 )
=> AB ⊥ BD ( định lý từ vuông góc đến song song )
=> ∠ ABD = 900
c) Xét Δ ABC và ΔBAD có :
AB chung
∠BAC = ∠ ABD ( = 900)
AC = BC ( ΔAMC = ΔDMB ( cmt )
=> Δ ABC = ΔBAD ( c.g.c)
=> BC = AD ( 2 cạnh t/ứng )
Ta có : MA = MD ( gt )
Mà M nằm giữa 2 điểm A và D
=> M là t/đ của AD
=> AM = 1/2AD
Mà AD = BC ( cmt )
=> AM= 1/2 BC ( đcm )
a) Vì M là trung điểm của BC
=> BM = CM
Xét tam giác ABM và tam giác DCM có:
AM = DM(gt)
góc AMB = DMC (đối đỉnh)
VM = CM (cmt)
=> đpcm
b) Xét tam giác BDM và tam giác CMA có:
BM = CM (cmt)
góc BMD = CMA (đối đỉnh)
DM = AM (gt)
=> tam giác BDM = tam giác CMA (cgc)
=> BD = AC( 2 cạnh tương ứng)
góc ACM = góc DBM (2 góc tương ứng)
mà 2 góc này ở vị trí so le trong của 2 đường thẳng BD và AC
=> BD//AC
Ta có hình vẽ:
a) Xét ΔAMC và ΔDMB, có:
MB = MC (M là trung điểm của BC)
góc BMD = góc CMA (hai góc đối đỉnh)
MA = MD (gt)
=> ΔAMC = ΔDMB (c.g.c)
b) Ta có: ΔAMC = ΔDMB (chứng minh ở câu a)
=> góc MAC = góc MDB (hai góc tương ứng)
=> AC//DB (có hai góc bằng nhau ở vị trí so le trong)