Tinh \(\int\frac{x}{2-x^2}\)dx
Chỉ hộ minh muốn tính nguyên hàm mà bậc tử nhỏ hơn bậc mẫu ta thương làm thế nào
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\int_0^1(2-\dfrac{2}{x+1})dx\)
\(=\int_0^12dx-\int_0^1\dfrac{2}{x+1}dx\)
\(=2x|_0^1-\int_0^1\dfrac{2}{x+1}d(x+1)\)
\(=2x|_0^1-2.\ln(x+1)|_0^1\)
\(=2-2\ln 2\)
lấy tử chia cho mẫu => tách ra làm bình thương thôi
nói ((((((chay)))))) thế này thì khó nói lắm
vì là nghiệm nguyên nên bạn chỉ cần nhẩm nghiệm xong dùng lược đồ hóc ne là được bạn nhé
\(y=2x+5;y=-x+4;y=5x...\) là hàm số bậc nhất
Hàm số bậc nhất có dạng:
\(y=ax+b\left(a\ne0\right)\)
Giải như sau:
Ta biết rằng \(d\left(u\left(x\right)\right)=u\left(x\right)'d\left(x\right)\)
\(\Rightarrow\int\frac{x}{2-x^2}dx=\frac{1}{2}\int\frac{d\left(x^2\right)}{2-x^2}=-\frac{1}{2}\int\frac{d\left(2-x^2\right)}{2-x^2}=-\frac{1}{2}ln\left|2-x^2\right|+c\)
P/s: Muốn tính nguyên hàm mà tử nhỏ hơn mẫu thứ nhất bạn có thể phan tích mẫu ra thành các nhân tử có bậc nhỏ như bậc của tử số, rồi từ đó đặt ẩn phụ hoặc tách ghép hợp lý. Thứ 2 là bạn có thể sử dụng phương pháp $d(u(x))=u(x)'dx$ để đưa ẩn về cùng một mối ( như cách mình giải bài này). Nói chung mình diễn đạt có thể không rõ ràng một chút nhưng chủ yếu bạn làm nhiều tìm tòi nhiều sẽ quen thôi :)