Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\int_0^1(2-\dfrac{2}{x+1})dx\)
\(=\int_0^12dx-\int_0^1\dfrac{2}{x+1}dx\)
\(=2x|_0^1-\int_0^1\dfrac{2}{x+1}d(x+1)\)
\(=2x|_0^1-2.\ln(x+1)|_0^1\)
\(=2-2\ln 2\)
lấy tử chia cho mẫu => tách ra làm bình thương thôi
nói ((((((chay)))))) thế này thì khó nói lắm
Đây là nguyên hàm của phân thức hữu tỉ không thực sự. Ta cần tách phần nguyên của phân thức
\(\frac{x^4+x^2+1}{x\left(x-2\right)\left(x+2\right)}=x+\frac{5x^2+1}{x\left(x-2\right)\left(x+2\right)}\)
Triển khai phân thức hữu tỉ thực sự thành tổng các phân thức đơn giản
\(\frac{5x^2+1}{x\left(x-2\right)\left(x+2\right)}=\frac{A_1}{x}+\frac{A_2}{x-2}+\frac{A_3}{x+2}\)
Ta tính được \(A_1=-\frac{1}{4},A_2=\frac{21}{8},A_3=\frac{21}{8}\)
Do đó :
\(I=\frac{1}{2}x^2+\int\frac{-\frac{1}{4}}{x}dx+\int\frac{\frac{21}{8}}{x-2}dx+\int\frac{\frac{11}{8}}{x+2}dx\)
\(=\frac{1}{2}x^2-\frac{1}{4}\ln\left|x\right|+\frac{21}{8}\ln\left|x-2\right|+\frac{21}{8}\ln\left|x+2\right|+C\)
\(\int sin^2\dfrac{x}{2}dx=\int\left(\dfrac{1}{2}-\dfrac{1}{2}cosx\right)dx=\dfrac{1}{2}x-\dfrac{1}{2}sinx+C\)
\(\int cos^23xdx=\int\left(\dfrac{1}{2}+\dfrac{1}{2}cos6x\right)dx=\dfrac{1}{2}x+\dfrac{1}{12}sin6x+C\)
\(\int4cos^2\dfrac{x}{2}dx=\int\left(2+2cosx\right)dx=2x+2sinx+C\)
a) \(f\left(x\right)=\frac{3x^2+3x+12}{\left(x-1\right)\left(x+2\right)x}=\frac{A}{x-1}+\frac{B}{x+2}+\frac{C}{x}=\frac{Ax\left(x+2\right)+Bx\left(x-1\right)+C\left(x-1\right)\left(x+2\right)}{\left(x-1\right)\left(x+2\right)x}\)
Bằng cách thay các nghiệm thực của mẫu số vào hai tử số, ta có hệ :
\(\begin{cases}x=1\rightarrow18=3A\Leftrightarrow A=6\\x=-2\rightarrow18=6B\Leftrightarrow B=3\\x=0\rightarrow12=-2C\Leftrightarrow=-6\end{cases}\) \(\Rightarrow f\left(x\right)=\frac{6}{x-1}+\frac{3}{x+2}-\frac{6}{x}\)
Vậy : \(\int\frac{3x^2+3x+12}{\left(x-1\right)\left(x+2\right)x}dx=\int\left(\frac{6}{x-1}+\frac{3}{x+2}-\frac{6}{x}\right)dx=6\ln\left|x-1\right|+3\ln\left|x+2\right|-6\ln\left|x\right|+C\)
b) \(f\left(x\right)=\frac{x^2+2x+6}{\left(x-1\right)\left(x-2\right)\left(x-4\right)}=\frac{A}{x-1}+\frac{B}{x-2}+\frac{C}{x-4}\)
\(=\frac{A\left(x-2\right)\left(x-4\right)+B\left(x-1\right)\left(x-4\right)+C\left(x-1\right)\left(x-2\right)}{\left(x-1\right)\left(x-2\right)\left(x-4\right)}\)
Bằng cách thay các nghiệm của mẫu số vào hai tử số ta có hệ :
\(\begin{cases}x=1\rightarrow9A=3\Leftrightarrow x=3\\x=2\rightarrow14=-2B\Leftrightarrow x=-7\\x=4\rightarrow30=6C\Leftrightarrow C=5\end{cases}\)
\(\Rightarrow f\left(x\right)=\frac{3}{x-1}-\frac{7}{x-2}+\frac{5}{x-4}\)
Vậy :
\(\int\frac{x^2+2x+6}{\left(x-1\right)\left(x-2\right)\left(x-4\right)}dx=\)\(\int\left(\frac{3}{x-1}+\frac{7}{x-2}+\frac{5}{x-4}\right)dx\)=\(3\ln\left|x-1\right|-7\ln\left|x-2\right|+5\ln\left|x-4\right|+C\)
\(\dfrac{x^2-4x+2}{x^2+2x-3}\)
\(=\dfrac{x^2+2x-3-6x-5}{x^2+2x-3}\)
\(=1-\dfrac{6x+5}{\left(x+3\right)\left(x-1\right)}\)
Đặt \(\dfrac{6x+5}{\left(x+3\right)\left(x-1\right)}=\dfrac{A}{x+3}+\dfrac{B}{x-1}\)
=>\(6x+5=A\left(x-1\right)+B\left(x+3\right)\)
=>\(6x+5=x\left(A+B\right)-A+3B\)
=>\(\left\{{}\begin{matrix}A+B=6\\-A+3B=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}B=\dfrac{11}{4}\\A=6-\dfrac{11}{4}=\dfrac{13}{4}\end{matrix}\right.\)
vậy: \(\dfrac{x^2-4x+2}{x^2+2x-3}=1-\dfrac{13}{4x+12}-\dfrac{11}{4x-4}\)
\(\int\dfrac{x^2-4x+2}{x^2+2x-3}dx=\int1-\dfrac{13}{4x+12}-\dfrac{11}{4x-4}dx\)
\(=x-\dfrac{13}{4}\cdot ln\left|x+3\right|-\dfrac{11}{4}\cdot ln\left|x-1\right|\)
a. \(\int\dfrac{x^3}{x-2}dx=\int\left(x^2+2x+4+\dfrac{8}{x-2}\right)dx=\dfrac{1}{3}x^3+x^2+4x+8ln\left|x-2\right|+C\)
b. \(\int\dfrac{dx}{x\sqrt{x^2+1}}=\int\dfrac{xdx}{x^2\sqrt{x^2+1}}\)
Đặt \(\sqrt{x^2+1}=u\Rightarrow x^2=u^2-1\Rightarrow xdx=udu\)
\(I=\int\dfrac{udu}{\left(u^2-1\right)u}=\int\dfrac{du}{u^2-1}=\dfrac{1}{2}\int\left(\dfrac{1}{u-1}-\dfrac{1}{u+1}\right)du=\dfrac{1}{2}ln\left|\dfrac{u-1}{u+1}\right|+C\)
\(=\dfrac{1}{2}ln\left|\dfrac{\sqrt{x^2+1}-1}{\sqrt{x^2+1}+1}\right|+C\)
c. \(\int\left(\dfrac{5}{x}+\sqrt{x^3}\right)dx=\int\left(\dfrac{5}{x}+x^{\dfrac{3}{2}}\right)dx=5ln\left|x\right|+\dfrac{2}{5}\sqrt{x^5}+C\)
d. \(\int\dfrac{x\sqrt{x}+\sqrt{x}}{x^2}dx=\int\left(x^{-\dfrac{1}{2}}+x^{-\dfrac{3}{2}}\right)dx=2\sqrt{x}-\dfrac{1}{2\sqrt{x}}+C\)
e. \(\int\dfrac{dx}{\sqrt{1-x^2}}=arcsin\left(x\right)+C\)
a)
\(\int\frac{2\left(x_{ }+1\right)}{x^2+2x_{ }-3}dx=\int\frac{2x+2}{x^2+2x-3}dx\)
\(=\int\frac{d\left(x^2+2x-3\right)}{x^2+2x-3}=ln\left|x^2+2x-3\right|+C\)
b)\(\int\frac{2\left(x-2\right)dx}{x^2-4x+3}=\int\frac{2x-4dx}{x^2-4x+3}=\int\frac{d\left(x^2-4x+3\right)}{x^2-4x+3}=ln\left|x^2-4x+3\right|+C\)
Giải như sau:
Ta biết rằng \(d\left(u\left(x\right)\right)=u\left(x\right)'d\left(x\right)\)
\(\Rightarrow\int\frac{x}{2-x^2}dx=\frac{1}{2}\int\frac{d\left(x^2\right)}{2-x^2}=-\frac{1}{2}\int\frac{d\left(2-x^2\right)}{2-x^2}=-\frac{1}{2}ln\left|2-x^2\right|+c\)
P/s: Muốn tính nguyên hàm mà tử nhỏ hơn mẫu thứ nhất bạn có thể phan tích mẫu ra thành các nhân tử có bậc nhỏ như bậc của tử số, rồi từ đó đặt ẩn phụ hoặc tách ghép hợp lý. Thứ 2 là bạn có thể sử dụng phương pháp $d(u(x))=u(x)'dx$ để đưa ẩn về cùng một mối ( như cách mình giải bài này). Nói chung mình diễn đạt có thể không rõ ràng một chút nhưng chủ yếu bạn làm nhiều tìm tòi nhiều sẽ quen thôi :)