Tính:
B= -1/3 + 1/32 - 1/33 + 1/34 - . . . . . . + 1/350 - 1/351
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,
`3A=3+3^3+3^3+...+3^{53}`
`3A-A=(3+3^3+3^3+...+3^{53})-(1+3+3^3+3^3+...+3^{52})`
`2A=3^{53}-1`
`A=(3^{53}-1)/2`
b,
`A=1+3+3^3+3^3+...+3^{52}`
`A=(1+3+3^2)+(3^3+3^4+3^5)+....+(3^{50}+3^{51}+3^{52})`
`A=(1+3+3^2)+3^3*(1+3+3^2)+....+3^{50}*(1+3+3^2)`
`A=(1+3+3^2)*(1+3^3+....+3^{50})`
`A=13*(1+3^3+....+3^{50})`
Do `13 \vdots 13 => A=13*(1+3^3+....+3^{50})\vdots 13 `
Vậy `A \vdots 13 `
\(A=1+3+3^2+...+3^{50}\)
\(3A=3+3^2+3^3+...+3^{51}\)
\(3A-A=\left(3+3^2+3^3+...+3^{51}\right)-\left(1+3+3^2+...+3^{50}\right)\)
\(2A=3^{51}-1\)
\(A=\dfrac{3^{51}-1}{2}\)
\(A=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{99}}\)
\(\Rightarrow\dfrac{A}{3}=\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{100}}\)
\(\Rightarrow A-\dfrac{A}{3}=\dfrac{2A}{3}=\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}\right)-\left(\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{100}}\right)\)
\(\Rightarrow\dfrac{2A}{3}=\left(\dfrac{1}{3^2}-\dfrac{1}{3^2}\right)+\left(\dfrac{1}{3^3}-\dfrac{1}{3^3}\right)+...+\left(\dfrac{1}{3^{99}}-\dfrac{1}{3^{99}}\right)+\left(\dfrac{1}{3}-\dfrac{1}{3^{100}}\right)=\dfrac{1}{3}-\dfrac{1}{3^{100}}\)
\(\Rightarrow2A=3\cdot\left(\dfrac{1}{3}-\dfrac{1}{3^{100}}\right)\)
\(\Rightarrow\text{A}=\dfrac{1-\dfrac{1}{3^{99}}}{2}\)
\(\Rightarrow A=\dfrac{1}{2}-\dfrac{1}{2.3^{99}}< \dfrac{1}{2}\)
\(\Leftrightarrow-B=1+3+3^2+...+3^{49}\\ \Leftrightarrow-3B=3+3^2+3^3+...+3^{50}\\ \Leftrightarrow-3B-B=3+3^2+...+3^{50}-1-3-...-3^{49}\\ \Leftrightarrow-4B=3^{50}-1\\ \Leftrightarrow B=\dfrac{1-3^{50}}{4}\)
\(A=3^0+3^1+3^2+...+3^{138}\)
\(3\cdot A=3^1+3^2+3^3+...+3^{139}\)
\(A=(3^{139}-3^0):2\)
\(A=\left(3^{139}-1\right):2\)
Đặt A = 1 + 3 + 3² + 3³ + ... + 3¹³⁷ + 3¹³⁸
⇒ 3A = 3 + 3² + 3³ + 3⁴ + ... + 3¹³⁸ + 3¹³⁹
⇒ 2A = 3A - A
= (3 + 3² + 3³ + 3⁴ + ... + 3¹³⁸ + 3¹³⁹) - (1 + 3 + 3² + 3³ + ... + 3¹³⁷ + 3¹³⁸)
= 3¹³⁹ - 1
⇒ A = (3¹³⁹ - 1)/3
⇒ 1 + 3 + 3¹ + 3² + 3³ + ... + 3¹³⁷ + 3¹³⁸
= (3¹³⁹ - 1)/3 + 3
= (3¹³⁹ + 2)/3
S có 30 số hạng. Nhóm thành 3 nhóm, mỗi nhóm 10 số hạng
\(S=\left(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40}\right)+\left(\frac{1}{42}+\frac{1}{42}+...+\frac{1}{50}\right)+\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}\right)\)
\(S<\left(\frac{1}{30}+\frac{1}{30}+...+\frac{1}{30}\right)+\left(\frac{1}{40}+\frac{1}{40}+...+\frac{1}{40}\right)+\left(\frac{1}{50}+\frac{1}{50}+...+\frac{1}{50}\right)\)
\(S<\frac{10}{30}+\frac{10}{40}+\frac{10}{50}\) ; \(S<\frac{47}{60}<\frac{48}{60}=\frac{4}{5}\) (1)
\(S>\left(\frac{1}{40}+\frac{1}{40}+...+\frac{1}{40}\right)+\left(\frac{1}{50}+\frac{1}{50}+...+\frac{1}{50}\right)\left(\frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}\right)\)
\(S<\frac{10}{40}+\frac{10}{50}+\frac{10}{60}\) ; \(S>\frac{37}{60}>\frac{36}{60}=\frac{3}{5}\) (2)
Từ (1) và (2) => \(\frac{3}{5}\)<S<\(\frac{4}{5}\)
\(S=\frac{1}{31}+\frac{1}{32}+...+\frac{1}{60}=\left(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40}\right)+\left(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{50}\right)+\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}\right)\)
Ta có: \(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40}>\frac{1}{40}+\frac{1}{40}+...+\frac{1}{40}=\frac{10}{40}=\frac{1}{4}\)
\(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{50}>\frac{1}{50}+\frac{1}{50}+...+\frac{1}{50}=\frac{10}{50}=\frac{1}{5}\)
\(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}>\frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}=\frac{10}{60}\)
\(\Rightarrow S>\frac{1}{4}+\frac{1}{5}+\frac{1}{6}=\frac{37}{60}>\frac{36}{60}=\frac{3}{5}\) (1)
Lại có: \(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40}< \frac{1}{30}+\frac{1}{30}+...+\frac{1}{30}=\frac{10}{30}=\frac{1}{3}\)
\(\frac{1}{41}+...+\frac{1}{50}< \frac{1}{40}+...+\frac{1}{40}=\frac{10}{40}=\frac{1}{4}\)
\(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}< \frac{1}{50}+\frac{1}{50}+...+\frac{1}{50}=\frac{10}{50}=\frac{1}{5}\)
\(\Rightarrow S< \frac{1}{3}+\frac{1}{4}+\frac{1}{5}=\frac{47}{60}< \frac{48}{60}=\frac{4}{5}\) (2)
Từ (1) và (2) => \(\frac{3}{5}< S< \frac{4}{5}\)
\(B=\frac{-1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+\frac{1}{3^4}-...+\frac{1}{3^{50}}-\frac{1}{3^{51}}\)
\(3B=-1+\frac{1}{3}-\frac{1}{3^2}+\frac{1}{3^3}-...+\frac{1}{3^{49}}-\frac{1}{3^{50}}\)
\(3B+B=\left(-1+\frac{1}{3}-\frac{1}{3^2}+\frac{1}{3^3}-...+\frac{1}{3^{49}}-\frac{1}{3^{50}}\right)+\left(\frac{-1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+\frac{1}{3^4}-...+\frac{1}{3^{50}}-\frac{1}{3^{51}}\right)\)
\(4B=-1-\frac{1}{3^{51}}\)
\(B=\frac{-1-\frac{1}{3^{51}}}{4}\)