K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 9 2023

\(A=1+3+3^2+...+3^{50}\)

\(3A=3+3^2+3^3+...+3^{51}\)

\(3A-A=\left(3+3^2+3^3+...+3^{51}\right)-\left(1+3+3^2+...+3^{50}\right)\)

\(2A=3^{51}-1\)

\(A=\dfrac{3^{51}-1}{2}\)

21 tháng 8 2023

a,

`3A=3+3^3+3^3+...+3^{53}`

`3A-A=(3+3^3+3^3+...+3^{53})-(1+3+3^3+3^3+...+3^{52})`

`2A=3^{53}-1`

`A=(3^{53}-1)/2`

b,

`A=1+3+3^3+3^3+...+3^{52}`

`A=(1+3+3^2)+(3^3+3^4+3^5)+....+(3^{50}+3^{51}+3^{52})`

`A=(1+3+3^2)+3^3*(1+3+3^2)+....+3^{50}*(1+3+3^2)`

`A=(1+3+3^2)*(1+3^3+....+3^{50})`

`A=13*(1+3^3+....+3^{50})`

Do `13 \vdots 13 => A=13*(1+3^3+....+3^{50})\vdots 13 `

Vậy `A \vdots 13 `

21 tháng 8 2023

Cảm onhaha

20 tháng 2 2020

a) ( -96) +64

= -32

b) | -29| + ( -11)

= 29 + ( -11)

=18

c) ( -367) +(-33)

=400

d) (-45)-30

= -15

e) (-28)-(-32)

= -28 + 32

= 4

f) ( -3) + 350 + (-7) +350

= -10 + 350+350

= 340+350

= 690

g) (-1075) -(29-1075)

= -1075 -29 +1075

= (-1075+1075) -29

= 0 -29

= -29

xin lỗi bài trên của mình làm sai

Ta có: 3A = 3.(1+3+32+33+...+399+3100) 

3A = 3+32+33+...+3100+3101

Suy ra: 3A – A = (3+32+33+...+3100+3101)−(1+3+32+33+...+399+3100)

2A = 3101−1

⇒ A = 3101−1

             2               

Vậy A = 3101−1

                 2           

                           

30 tháng 11 2021

\(A=1+3+3^2+3^3+...+3^{100}\)

\(\Rightarrow3A=3+3^2+3^3+...+3^{101}\)

Trừ theo vế:

\(\Rightarrow3A-A=\left(3+3^2+3^3+...3^{101}\right)-\left(1+3+3^2+...+3^{100}\right)\)

\(2A=3^{101}-1\Rightarrow A=\dfrac{3^{101}-1}{2}\)

 

24 tháng 10 2021

undefined

24 tháng 10 2021

A =1+3+32 +33 +...+ 3100

3A=3.(30+3+32 +33 +...+ 3100)

3A=31+32 +33 +...+ 3101

3A-A=(31+32 +33 +...+ 3101)-(30+3+32 +33 +...+ 3100)

2A=3101-30

A=(3101-1) :2

vậy A=(3101-1) :2

t.i.c cho mình nha

 

13 tháng 12 2021

Tham khảo

Ta có: 3A = 3.(1+3+32+33+...+399+3100)(1+3+32+33+...+399+3100)

3A = 3+32+33+...+3100+31013+32+33+...+3100+3101

Suy ra: 3A – A = (3+32+33+...+3100+3101)−(1+3+32+33+...+399+3100)(3+32+33+...+3100+3101)−(1+3+32+33+...+399+3100)

2A = 3101−13101−1

⇒⇒ A = 3101−123101−12

Vậy A = 3101−12

16 tháng 12 2021

\(A=1-3+3^2-3^3+3^4-...-3^{98}-3^{99}+3^{100}\\ 3A=3-3^2+3^3-3^4-...-3^{98}+3^{99}-3^{100}+3^{101}\\ 3A-A=3^{101}-1\\ \Rightarrow A=\dfrac{3^{101}-1}{2}\)

15 tháng 12 2021

 

A=3 mũ 101-1 phân số2

 

 

 

 

 

26 tháng 12 2023

AH
Akai Haruma
Giáo viên
20 tháng 12 2023

Lời giải:

$A=1+3+3^2+3^3+...+3^{2021}$

$3A=3+3^2+3^3+...+3^{2022}$

$\Rightarrow 3A-A=(3+3^2+3^3+...+3^{2022}) - (1+3+3^2+3^3+...+3^{2021})$

$\Rightarrow 2A=3^{2022}-1$

$\Rightarrow A=\frac{3^{2022}-1}{2}$

$B-A=\frac{3^{2022}}{2}-\frac{3^{2022}-1}{2}=\frac{1}{2}$