K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2016

Ta nhận thấy rằng nếu a = 2 thì \(9\overline{abcd}\) là một số có nhiều hơn 4 chữ số (trái với giả thiết)

Vậy 0< a <2 , mà a là số tự nhiên nên a = 1 thỏa mãn đề bài.

Suy ra \(9\times\overline{1bcd}=\overline{dcb1}\)

Chú ý rằng 9d có tận cùng bằng 1 khi d = 9 (duy nhất)

Vậy ta có \(9\times\overline{1bc9}=\overline{9cb1}\)

Mặt khác, vế trái của đẳng thức chia hết cho 9 , vậy vế phải cũng chia hết cho 9.

Do vậy 9 + c + b + 1 = 10 + b + c chia hết cho 9

Vậy b+c chỉ thuộc các giá trị là 8 và 17 (các giá trị lớn hơn loại vì b+c < 19)

Với mỗi trường hợp ta chọn các giá trị của b từ 1 đến 9 , đồng thời ta cũng tìm được giá trị của c tương ứng.

Tới đây bạn tự làm nhé ^^

31 tháng 10 2016

Chị Ngọc chịu khó cày thiệt á nha, cày cả trưa luôn ^^

E lười thí mồ =)))

24 tháng 4 2019

\(f\left(x\right)\)có hai nghiệm là x=-1 và x=1

ta có: \(f\left(1\right)=0\Leftrightarrow1^3+a+b-2=0\Leftrightarrow a+b=1\)(1)

\(f\left(-1\right)=\left(-1\right)^3+a\left(-1\right)^2+b\left(-1\right)-2=0\Leftrightarrow a-b=3\)(2)

Từ (1) VÀ (2) TA CÓ: \(a=\frac{1+3}{2}=2;b=\frac{1-3}{2}=-1\)

b)Đề bài tìm số chính phương có bốn chữ số khác nhau ?

Đặt : \(\overline{abcd}=n^2;\overline{dcba}=m^2\)(g/s m, n là các số tự nhiên)

Theo bài ta có các giả thiết sau:  

\(1000\le m^2,n^2\le9999\Rightarrow32\le m;n\le99\)(1)

\(m^2⋮n^2\Rightarrow m⋮n\)(2)

=> Đặt m=kn (k là số tự nhiên, K>1)

Ta có: \(\hept{\begin{cases}32\le n\le99\\32\le m\le99\end{cases}\Rightarrow}\hept{\begin{cases}32.k\le kn\le99k\\32\le kn\le99\end{cases}\Rightarrow}32k\le kn\le99\Rightarrow k\le\frac{99}{32}\Rightarrow k\le3\)

Vậy nên k=2 hoặc bằng 3

Vì \(m=kn\Rightarrow m^2=k^2.n^2\Rightarrow\overline{dcba}=k^2.\overline{abcd}\)

+) Với k=2

Ta có: \(\overline{dcba}=4.\overline{abcd}\)

Vì  \(\overline{abcd};\overline{dcba}\)là các số chính phương có 4 chữ số khác nhau \(\Rightarrow d,a\in\left\{1;4;6;9;\right\}\)

và \(\overline{dcba}⋮\overline{abcd}\)nên d>a(2)

@) Khi \(a\ge4\Rightarrow\overline{dcba}\ge4.\overline{4bcd}>9999\)(loại)

Nên a=1.

Ta có: \(\overline{dcb1}=4.\overline{1bcd}\)vô lí vì không có số \(d\in\left\{1;4;6;9;\right\}\)nhân với 4 bằng 1

+) Với K=3

tương tự lập luận trên ta có a=1

Ta có: \(\overline{dcb1}=9.\overline{1bcd}\)=> d=9

Ta có: \(\overline{9cb1}=9.\overline{1bc9}\Leftrightarrow9000+c.100+b.10+1=9\left(1000+b.100+c.10+9\right)\)

\(\Leftrightarrow10c=890b+80\Leftrightarrow c=89b+8\)vì c, b là các số tự nhiên từ 0, đến 9

=> b=0; c=8

=> Số cần tìm 1089 và 9801 thỏa mãn với các điều kiện bài toán 

30 tháng 3 2023

Đúng mình sẽ like nha

 

\(E-2\overline{yzt}=\overline{xz}\)

=>1000x+100y+10z+t-200y-20z-20t=10x+z

=>990x-100y-11z-19t=0

=>\(\left(x,y,z,t\right)\in\varnothing\)

2 tháng 8 2023

\(\overline{abcd}⋮9\)  (d là số nguyên tố)

\(\Rightarrow d\in\left\{3;5;7\right\}\)

mà \(\overline{abcd}\) là số chính phương

\(\Rightarrow d\in\left\{5\right\}\Rightarrow c\in\left\{2\right\}\)

\(\Rightarrow\overline{ab}\in\left\{12;20;30;56;72\right\}\)

mà \(\left\{{}\begin{matrix}a+b+c+d⋮9\\c+d=2+5=7\end{matrix}\right.\)

\(\Rightarrow\overline{ab}\in\left\{20;56\right\}\)

\(\Rightarrow\overline{abcd}\in\left\{2025;5625\right\}\)

NV
19 tháng 2 2020

\(1000a+100b+10c+d+100a+10b+c+100a+10b+d=4426\)

\(\Leftrightarrow1200a+120b+11c+2d=4426\)

\(\Rightarrow1200a< 4426\Rightarrow a\le3\)

Nếu \(a\le2\Rightarrow1200a+120b+11c+2d\le1200.2+9\left(120+11+2\right)=3597< 4426\left(ktm\right)\)

\(\Rightarrow2< a\le3\Rightarrow a=3\)

\(\Rightarrow120b+11c+2d=4426-1200.3=826\)

- Nếu \(b\ge7\Rightarrow120b\ge840>826\left(ktm\right)\) \(\Rightarrow b< 7\)

Nếu \(b\le5\Rightarrow120b+11c+2d\le120.5+9.\left(11+2\right)=717< 826\left(ktm\right)\)

\(\Rightarrow5< b< 7\Rightarrow b=6\)

\(\Rightarrow11c+2d=826-120.6=106\)

Lý luận tương tự ta được \(c>7\)

\(2d\)\(106\) chẵn \(\Rightarrow c\) chẵn \(\Rightarrow c=8\Rightarrow d=9\)

Vậy số cần tìm là \(3689\)

Vì q=a2q=a2 nên ta có : q=1;4,9q=1;4,9

Với q=1q=1 ta có : abcd¯¯¯¯¯¯¯¯¯¯=dcba¯¯¯¯¯¯¯¯¯¯→a=b=c=dabcd¯=dcba¯→a=b=c=d 

Mà abcd¯¯¯¯¯¯¯¯¯¯abcd¯ có dạng bình phương 1 số nguyên nên ta thử với các số có dạng xxxx¯¯¯¯¯¯¯¯¯¯¯=y2 (y∈Z)xxxx¯=y2 (y∈Z). Phương trình này vô nghiệm nên trường hợp này loại.

Với q=4q=4 ta có : abcd¯¯¯¯¯¯¯¯¯¯=4dcba¯¯¯¯¯¯¯¯¯¯abcd¯=4dcba¯

Có d chẵn, a≥9a≥9 nên d=2→a=8;9d=2→a=8;9 

Tiếp tục thử với a=8; a=9a=8; a=9 bằng cách tách số hạng ta không tìm được số nào thỏa mãn.

Với q=9q=9 ta có a=9; d=1a=9; d=1 Tách tương tự không tìm được số nào thỏa mãn.

Nếu có chắc thử sai nhưng hướng làm là thế 

27 tháng 11 2017
kết quả là bằng 7 vì 7 là số mình thích nhất. biết vì sao mình thích số 7 không. vì số 7 là số áo của ronaldo và là tháng mình sinh ra. kết quả là bằng 7 ok. vỗ tay ... vỗ tay
22 tháng 11 2016

số nguyên tố nhỏ nhất : 2

số lớn nhất có 1 chữ số : 9

số nguyên số chia hết cho 5 ( có 1 chữ số ) : 5

số nhỏ nhất chia hết cho 5 ( có 1 chữ số ) : 5

abcd = 2955

22 tháng 11 2016

Số nguyên tố nhỏ nhất là 2 => a = 2

Số lớn nhất có 1 chữ số là 9 => b = 9

Số nguyên tố chia hết cho 5 là 5 => c = 5

Số nhỏ nhất chia hết cho 5 là 0 => d = 0

abcd = 2950. Năm đó là năm 2950

Mình thấy nó vô lí thế nào ấy