K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2016

Ta nhận thấy rằng nếu a = 2 thì \(9\overline{abcd}\) là một số có nhiều hơn 4 chữ số (trái với giả thiết)

Vậy 0< a <2 , mà a là số tự nhiên nên a = 1 thỏa mãn đề bài.

Suy ra \(9\times\overline{1bcd}=\overline{dcb1}\)

Chú ý rằng 9d có tận cùng bằng 1 khi d = 9 (duy nhất)

Vậy ta có \(9\times\overline{1bc9}=\overline{9cb1}\)

Mặt khác, vế trái của đẳng thức chia hết cho 9 , vậy vế phải cũng chia hết cho 9.

Do vậy 9 + c + b + 1 = 10 + b + c chia hết cho 9

Vậy b+c chỉ thuộc các giá trị là 8 và 17 (các giá trị lớn hơn loại vì b+c < 19)

Với mỗi trường hợp ta chọn các giá trị của b từ 1 đến 9 , đồng thời ta cũng tìm được giá trị của c tương ứng.

Tới đây bạn tự làm nhé ^^

31 tháng 10 2016

Chị Ngọc chịu khó cày thiệt á nha, cày cả trưa luôn ^^

E lười thí mồ =)))

26 tháng 9 2016

\(\left(x-7\right)^{x+1}-\left(x-7\right)^{x+11}=0\)

\(\Rightarrow\left(x-7\right)^{x+1}.\left[1-\left(x-7\right)^{10}\right]=0\)

\(\Rightarrow\left[\begin{array}{nghiempt}\left(x-7\right)^{x+1}=0\\1-\left(x-7\right)^{10}=0\end{array}\right.\)\(\Rightarrow\left[\begin{array}{nghiempt}x-7=0\\\left(x-7\right)^{10}=1\end{array}\right.\)\(\Rightarrow\left[\begin{array}{nghiempt}x-7=0\\x-7=1\\x-7=-1\end{array}\right.\)\(\Rightarrow\left[\begin{array}{nghiempt}x=7\\x=8\\x=6\end{array}\right.\)

Vậy \(\left[\begin{array}{nghiempt}x=7\\x=8\\x=6\end{array}\right.\) thỏa mãn đề bài

26 tháng 9 2016

\(\left(x-7\right)^{x+1}-\left(x-7\right)^{x+11}=0\)

\(\Rightarrow\left(x-7\right)^{x+1}.\left[1-\left(x-7\right)^{x+10}\right]=0\)

\(\Rightarrow x-7=0\) hoặc \(1-\left(x-7\right)^{10}=0\)

+) \(x-7=0\Rightarrow x=7\)

+) \(1-\left(x-7\right)^{10}=0\)

\(\Rightarrow x-7=\pm1\)

\(x-7=1\Rightarrow x=8\)

\(x-7=-1\Rightarrow x=6\)

Vậy \(x\in\left\{7;8;6\right\}\)

9 tháng 10 2016

a)\(\sqrt{ }\)2.25*2.56=\(\frac{12}{5}\)                            =                             \(\sqrt{2.25}\)*\(\sqrt{2.56}\)=\(\frac{12}{5}\)

b)\(\sqrt{2.89\cdot6.25}\)=\(\frac{17}{4}\)                           =                             \(\sqrt{2.89\cdot\sqrt{ }6.25}=\frac{17}{4}\)

9 tháng 10 2016

đề bài là gì bạn ơi

 

26 tháng 10 2016

\(\pi\approx3\approx3,1\approx3,1416\)

26 tháng 10 2016

a) Hàng đơn vị : 3,1

b) Hai chữ số thập phân : 3,14

c) Bốn chữ số thập phân : 3,1416

8 tháng 11 2016

Mình chỉ làm những câu rõ đề thôi nhé ^^

1/ a/ Đặt \(t=2x-3\) thì pt trở thành \(t^3=\left(t+2\right)^2\Leftrightarrow t^3-t^2-4t-4=0\Leftrightarrow t^2\left(t-1\right)-4\left(t-1\right)=0\)

\(\Leftrightarrow\left(t-1\right)\left(t^2-4\right)=0\Leftrightarrow\left(t-2\right)\left(t-1\right)\left(t+2\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}t=2\\t=1\\t=-2\end{array}\right.\)

Tới đây dễ rồi .

b/ Tương tự đặt \(a=2x-3\) thì pt trở thành \(a^3=a+2\Leftrightarrow a^3-a-2=0\)

Bạn xem lại đề , lớp 7 chưa học giải pt này đâu

c/ VT > 0 => VP > 0 => x > 0

Với x > 0 thì: \(\left|x+3\right|+\left|x+4\right|+\left|x+5\right|=x+3+x+4+x+5=3x+12\)

Tới đây dễ rồi :)

8 tháng 11 2016

4) |2-|3-2x||=4

<=>\(\left[\begin{array}{nghiempt}2-\left|3-2x\right|=4\\2-\left|3-2x\right|=-4\end{array}\right.\)

<=> \(\left[\begin{array}{nghiempt}\left|3-2x\right|=-2\left(vl\right)\\\left|3-2x\right|=6\end{array}\right.\)

<=> \(\left[\begin{array}{nghiempt}3-2x=6\\3-2x=-6\end{array}\right.\)

<=> \(\left[\begin{array}{nghiempt}x=-\frac{3}{2}\\x=\frac{9}{2}\end{array}\right.\)

23 tháng 10 2016

Đặt: \(\frac{a}{b}=\frac{b}{c}=k\)

=> \(\frac{a}{b}.\frac{b}{c}=k^2\)

=> \(\frac{a}{c}=k^2\) (1)

Lại có: \(\frac{a+b}{b+c}=\frac{a}{b}=\frac{b}{c}=k\)

=> \(\left(\frac{a+b}{b+c}\right)^2=k^2\) (2)

Từ (1) và (2) => \(\left(\frac{a+b}{b+c}\right)^2=\frac{a}{c}\)

23 tháng 10 2016

Giải:
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

\(\Rightarrow a=bk,b=ck\)

Ta có:

\(\frac{a}{c}=\frac{bk}{c}=\frac{bkk}{ck}=\frac{bkk}{b}=k^2\) (1)

\(\left(\frac{a+b}{b+c}\right)^2=\left(\frac{bk+ck}{b+c}\right)^2=\left[\frac{k\left(b+c\right)}{b+c}\right]^2=k^2\) (2)

Từ (1) và (2) suy ra \(\frac{a}{c}=\left(\frac{a+b}{b+c}\right)^2\)

Vậy \(\frac{a}{c}=\left(\frac{a+b}{b+c}\right)^2\)

23 tháng 10 2016

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b+c}{b+c+d}\)

\(\Rightarrow\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\left(\frac{a+b+c}{b+c+d}\right)^3\)

\(\Rightarrow\frac{a}{d}=\left(\frac{a+b+c}{b+c+d}\right)^3\left(đpcm\right)\)

23 tháng 10 2016

Giải:

Đặt \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=k\)

\(\Rightarrow a=bk,b=ck,c=dk\)

Ta có:

\(\frac{a}{d}=\frac{bk}{d}=\frac{bkk}{dk}=\frac{bk^2}{c}=\frac{b.k^2.k}{ck}=\frac{b.k^3}{b}=k^3\) (1)

\(\left(\frac{a+b+c}{b+c+d}\right)^3=\left(\frac{bk+ck+dk}{b+c+d}\right)^3=\left[\frac{k\left(b+c+d\right)}{b+c+d}\right]^3=k^3\) (2)

Từ (1) và (2) suy ra \(\frac{a}{d}=\left(\frac{a+b+c}{b+c+d}\right)^3\left(đpcm\right)\)

13 tháng 11 2016

Gọi 3 số cần tìm là a,b,c,ta có:

\(\frac{a}{5}=\frac{b}{9};\frac{a}{10}=\frac{c}{7}\) => \(\frac{a}{10}=\frac{b}{18}=\frac{c}{7}\)

Đặt: \(\frac{a}{10}=\frac{b}{18}=\frac{c}{7}=k\Rightarrow\begin{cases}a=10k\\b=18k\\c=7k\end{cases}\)

Vì BCNN(a;b;c) = 10.9.7.k = 630.k = 3150 => k = 5

=> \(\begin{cases}a=50\\b=90\\c=35\end{cases}\)

13 tháng 11 2016

Thanks nhé Nguyễn Đình Dũng

22 tháng 11 2016

số nguyên tố nhỏ nhất : 2

số lớn nhất có 1 chữ số : 9

số nguyên số chia hết cho 5 ( có 1 chữ số ) : 5

số nhỏ nhất chia hết cho 5 ( có 1 chữ số ) : 5

abcd = 2955

22 tháng 11 2016

Số nguyên tố nhỏ nhất là 2 => a = 2

Số lớn nhất có 1 chữ số là 9 => b = 9

Số nguyên tố chia hết cho 5 là 5 => c = 5

Số nhỏ nhất chia hết cho 5 là 0 => d = 0

abcd = 2950. Năm đó là năm 2950

Mình thấy nó vô lí thế nào ấy