\(f\left(x\right)=x^3+ax^2+bx-2\). Xác định a,b biết đa thức f(x) c...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 4 2019

\(f\left(x\right)\)có hai nghiệm là x=-1 và x=1

ta có: \(f\left(1\right)=0\Leftrightarrow1^3+a+b-2=0\Leftrightarrow a+b=1\)(1)

\(f\left(-1\right)=\left(-1\right)^3+a\left(-1\right)^2+b\left(-1\right)-2=0\Leftrightarrow a-b=3\)(2)

Từ (1) VÀ (2) TA CÓ: \(a=\frac{1+3}{2}=2;b=\frac{1-3}{2}=-1\)

b)Đề bài tìm số chính phương có bốn chữ số khác nhau ?

Đặt : \(\overline{abcd}=n^2;\overline{dcba}=m^2\)(g/s m, n là các số tự nhiên)

Theo bài ta có các giả thiết sau:  

\(1000\le m^2,n^2\le9999\Rightarrow32\le m;n\le99\)(1)

\(m^2⋮n^2\Rightarrow m⋮n\)(2)

=> Đặt m=kn (k là số tự nhiên, K>1)

Ta có: \(\hept{\begin{cases}32\le n\le99\\32\le m\le99\end{cases}\Rightarrow}\hept{\begin{cases}32.k\le kn\le99k\\32\le kn\le99\end{cases}\Rightarrow}32k\le kn\le99\Rightarrow k\le\frac{99}{32}\Rightarrow k\le3\)

Vậy nên k=2 hoặc bằng 3

Vì \(m=kn\Rightarrow m^2=k^2.n^2\Rightarrow\overline{dcba}=k^2.\overline{abcd}\)

+) Với k=2

Ta có: \(\overline{dcba}=4.\overline{abcd}\)

Vì  \(\overline{abcd};\overline{dcba}\)là các số chính phương có 4 chữ số khác nhau \(\Rightarrow d,a\in\left\{1;4;6;9;\right\}\)

và \(\overline{dcba}⋮\overline{abcd}\)nên d>a(2)

@) Khi \(a\ge4\Rightarrow\overline{dcba}\ge4.\overline{4bcd}>9999\)(loại)

Nên a=1.

Ta có: \(\overline{dcb1}=4.\overline{1bcd}\)vô lí vì không có số \(d\in\left\{1;4;6;9;\right\}\)nhân với 4 bằng 1

+) Với K=3

tương tự lập luận trên ta có a=1

Ta có: \(\overline{dcb1}=9.\overline{1bcd}\)=> d=9

Ta có: \(\overline{9cb1}=9.\overline{1bc9}\Leftrightarrow9000+c.100+b.10+1=9\left(1000+b.100+c.10+9\right)\)

\(\Leftrightarrow10c=890b+80\Leftrightarrow c=89b+8\)vì c, b là các số tự nhiên từ 0, đến 9

=> b=0; c=8

=> Số cần tìm 1089 và 9801 thỏa mãn với các điều kiện bài toán 

5 tháng 5 2019

\(f\left(-1\right)=-1+a-b-2\)

mà\(f\left(-1\right)=0\)

\(\Rightarrow-1+a-b-2=0\)

\(\Rightarrow a-b=3\left(1\right)\)

\(f\left(1\right)=1+a+b-2\)

mà \(f\left(1\right)=0\)

\(\Rightarrow1+a+b-2=0\)

\(\Rightarrow a+b=1\left(2\right)\)

Từ (1) và (2) \(\Rightarrow a=\left(1+3\right):2=2\)

               Thay a=2 vào (2)      \(\Rightarrow b=-1\)

Vậy ...

NV
14 tháng 3 2019

1/ \(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{\left(a+c\right)^2}{\left(b+d\right)^2}=\frac{a^2+c^2}{b^2+d^2}\)

2/ \(\frac{2x-31}{2x-1}=\frac{2x-1-30}{2x-1}=1-\frac{30}{2x-1}\Rightarrow30⋮\left(2x-1\right)\)

\(\Rightarrow2x-1=Ư\left(30\right)\) , mà x nguyên dương \(\Rightarrow2x-1\ge1\), \(2x-1\) lẻ

\(\Rightarrow2x-1=\left\{1;3;5;15\right\}\Rightarrow x=\left\{1;2;3;8\right\}\)

3/ \(\left\{{}\begin{matrix}2\left(x-2y\right)^{2016}\ge0\\3\left|y+\frac{1}{2}\right|\ge0\end{matrix}\right.\) \(\Rightarrow B\ge0+0-2015=-2015\)

\(\Rightarrow B_{Min}=-2015\) khi \(\left\{{}\begin{matrix}x-2y=0\\y+\frac{1}{2}=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-1\\y=-\frac{1}{2}\end{matrix}\right.\)

4/ Nếu \(a\ge2\Rightarrow\overline{abcd}.9\ge2000.9=18000>\overline{dcba}\) (loại)

\(\Rightarrow a=1\Rightarrow\overline{1bcd}.9=\overline{dcb1}\)

\(\Rightarrow d=9\Rightarrow\overline{1bc9}.9=\overline{9cb1}\)

\(\Rightarrow\left(1000+\overline{bc}+9\right).9=\left(9000+\overline{cb}+1\right)\)

\(\Rightarrow\overline{bc}=\overline{cb}-80\Rightarrow c\ge8\Rightarrow\left[{}\begin{matrix}c=9\\c=8\end{matrix}\right.\)

\(\overline{dcba}⋮9\Rightarrow a+b+c+d⋮9\)

Nếu \(b\ge2\Rightarrow\overline{abcd}.9\ge1200.9=10800>\overline{dcba}\) (vô lý) \(\Rightarrow b< 2\)

- Với \(c=9\Rightarrow1+b+9+9=19+b⋮9\Rightarrow b=8>2\left(l\right)\)

- Với \(c=8\Rightarrow1+b+8+9=18+b⋮9\Rightarrow b=0\Rightarrow\overline{abcd}=1089\)

Thử lại: \(1089.9=9801\) (thỏa mãn)

14 tháng 3 2019

khó quá nhỉ T-T

9 tháng 3 2020

a)Với x1 = x= 1

 \( \implies\) \(f\left(1\right)=f\left(1.1\right)\)

 \( \implies\) \(f\left(1\right)=f\left(1\right).f\left(1\right)\)

 \( \implies\)\(f\left(1\right).f\left(1\right)-f\left(1\right)=0\)

 \( \implies\) \(f\left(1\right).\left[f\left(1\right)-1\right]=0\)

\( \implies\) \(\orbr{\begin{cases}f\left(1\right)=0\\f\left(1\right)-1=0\end{cases}}\)

Mà \(f\left(x\right)\) khác \(0\) ( với mọi \(x\) \(\in\) \(R\) ; \(x\) khác \(0\) )

\( \implies\) \(f\left(1\right)\) khác \(0\)

\( \implies\) \(f\left(1\right)-1=0\)

\( \implies\) \(f\left(1\right)=1\)

b)Ta có : \(f\left(\frac{1}{x}\right).f\left(x\right)=f\left(\frac{1}{x}.x\right)\)

\( \implies\) \(f\left(\frac{1}{x}\right).f\left(x\right)=f\left(1\right)=1\)

 \( \implies\) \(f\left(\frac{1}{x}\right).f\left(x\right)=1\)

\( \implies\) \(f\left(\frac{1}{x}\right)=\frac{1}{f\left(x\right)}\)

\( \implies\) \(f\left(x^{-1}\right)=\left[f\left(x\right)\right]^{-1}\)

4 tháng 3 2018

Khó kinh :))

Đếu bít !!!!!!!!!!!!!!!!!!!!! ^_^