36 : 2/5 =
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(...=16.\left(36-37\right)=16.\left(-1\right)=-16\)
b) \(...=9.3+9.50=9.\left(3+50\right)=9.53=477\)
c) \(...=2.\left(\left(5.16-18\right)+36:18\right)=2.\left(70+2\right)=2.72=144\)
d) \(...=5\left(48:8+44\right)=5\left(6+44\right)=5.50=250\)
e) \(...=20-6=14\)
f) \(...=50+13-2=61\)
a) 16 . 36 - 16 . 37
= 16 . (36 - 37)
= 16 . (-1)
= -16
b) 36 : 4 . 3 + 9 . 50
= 9 . 3 + 9 . 50
= 9 . (3 + 50)
= 9 . 53
= 477
c) 2 . (5 . 16 - 18) + 36 : 18 . 2
= 2 . (80 - 18) + 2 . 2
= 2 . 62 + 2 . 2
= 2 . (62 + 2)
= 2 . 64
= 128
36/9 : 5/14 + 36/9 : 2/14
= 36/9 : ( 5/14 + 2/14)
= 36/9 : 2/7
=252/18
có j sai sót mong em bỏ qua nhé- tại chị học qua lâu rùi nên ko nhớ lăm!!!!!:3
sorry pé nhá
36/9 : ( 5/14 + 2/14 )
= 36/9 : 7/14
( 36/9 = 4)
=4: 7/14
=56/7
nhá hồi nãy chị làm nhầm:)
`#3107.101107`
a)
`2/5 \sqrt{25} - 1/2 \sqrt{4}`
`= 2/5 * \sqrt{5^2} - 1/2 * \sqrt{2^2}`
`= 2/5*5 - 1/2*2`
`= 2 - 1`
`= 1`
b)
`0,5*\sqrt{0,09} + 5*\sqrt{0,81}`
`= 0,5*\sqrt{(0,3)^2} + 5*\sqrt{(0,9)^2}`
`= 0,5*0,3 + 5*0,9`
`= 0,15 + 4,5`
`= 4,65`
c)
`2/5\sqrt{25/36} - 5/2\sqrt{4/25}`
`= 2/5*\sqrt{(5^2)/(6^2)} - 5/2*\sqrt{(2^2)/(5^2)}`
`= 2/5*5/6 - 5/2*2/5`
`= 1/3 - 1`
`= -2/3`
d)
`-2 \sqrt{(-36)/(-16)} + 5 \sqrt{(-81)/(-25)}`
`= -2*\sqrt{36/16} + 5*\sqrt{81/25}`
`= -2*\sqrt{(6^2)/(4^2)} + 5*\sqrt{(9^2)/(5^2)}`
`= -2*6/4 + 5*9/5`
`= -3 + 9`
`= 6`
E = \(\frac{36}{1\cdot7}+\frac{36}{7\cdot13}+...+\frac{36}{94\cdot100}=\frac{36}{6}\left[\frac{1}{1\cdot7}+\frac{1}{7\cdot13}+...+\frac{1}{94\cdot100}\right]\)
\(=6\left[1-\frac{1}{7}+\frac{1}{7}-\frac{1}{13}+...+\frac{1}{94}-\frac{1}{100}\right]=6\left[1-\frac{1}{100}\right]\)
\(=6\cdot\frac{99}{100}=\frac{297}{50}\)
F = \(\frac{1}{10}+\frac{1}{40}+\frac{1}{88}+...+\frac{1}{\left[3a+2\right]\left[3a+5\right]}\)
\(=\frac{1}{2\cdot5}+\frac{1}{5\cdot8}+\frac{1}{8\cdot11}+...+\frac{1}{\left[3a+2\right]\left[3a+5\right]}\)
\(=\frac{1}{3}\left[\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{3a+2}-\frac{1}{3a+5}\right]\)
\(=\frac{1}{3}\left[\frac{1}{2}-\frac{1}{3a+5}\right]=\frac{1}{6}-\frac{1}{9a+15}\)
G = \(\frac{1}{2\cdot3}+\frac{2}{3\cdot5}+\frac{3}{5\cdot8}+\frac{4}{8\cdot12}+\frac{5}{12\cdot17}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{12}-\frac{1}{17}\)
\(=\frac{1}{2}-\frac{1}{17}=\frac{15}{34}\)