Với x, y là các số dương t/m : \(\left[xy+\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\right]^2=2016\)
Tính gái trị của bt : \(S=x\sqrt{1+y^2}+y\sqrt{1+x^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ giả thiết ta có \(2016=x^2y^2+1+x^2+y^2+x^2y^2+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\)
\(\Leftrightarrow x^2+y^2+2x^2y^2+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}=2015\)
Ta có \(S^2=x^2\left(1+y^2\right)+y^2\left(1+x^2\right)+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\)
\(=x^2+y^2+2x^2y^2+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}=2015\)
\(\Rightarrow S=\sqrt{2015}\) (Vì S > 0)
Ta có:
\(x^2+1=x^2+xy+yz+zx\)
\(=x\left(x+y\right)+z\left(x+y\right)=\left(x+y\right)\left(x+z\right)\)
Tương tự:
\(\left\{{}\begin{matrix}y^2+1=\left(y+z\right)\left(y+x\right)\\z^2+1=\left(z+y\right)\left(z+x\right)\end{matrix}\right.\)
\(A=x\sqrt{\dfrac{\left(x+y\right)\left(y+z\right)\left(z+x\right)\left(y+z\right)}{\left(x+y\right)\left(z+x\right)}}+y\sqrt{\dfrac{\left(z+x\right)\left(y+z\right)\left(x+y\right)\left(z+x\right)}{\left(x+y\right)\left(y+z\right)}}+z\sqrt{\dfrac{\left(x+y\right)\left(z+x\right)\left(y+z\right)\left(x+y\right)}{\left(z+x\right)\left(y+z\right)}}\)
\(=x\left|y+z\right|+y\left|z+x\right|+z\left|x+y\right|\)
TH1: x,y,z <0
\(A=-x\left(y+z\right)-y\left(z+x\right)-z\left(x+y\right)=-2\)
TH2: x,y,z>0
\(A=x\left(y+z\right)+y\left(z+x\right)+z\left(x+y\right)=2\)
Ta có \(1+z^2=xy+yz+zx+z^2\)
\(=y\left(x+z\right)+z\left(x+z\right)\)
\(=\left(x+z\right)\left(y+z\right)\)
CMTT, \(1+x^2=\left(x+y\right)\left(x+z\right)\) và \(1+y^2=\left(x+y\right)\left(y+z\right)\)
Do đó \(\sqrt{\dfrac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}}\) \(=\sqrt{\dfrac{\left(x+y\right)\left(y+z\right)\left(x+z\right)\left(y+z\right)}{\left(x+y\right)\left(x+z\right)}}\)
\(=\sqrt{\left(y+z\right)^2}\) \(=\left|y+z\right|\)
Tương tự như thế, ta được
\(A=x\left|y+z\right|+y\left|z+x\right|+z\left|x+y\right|\)
Cái này không tính ra số cụ thể được nhé bạn. Nó còn phải tùy vào dấu của \(x+y,y+z,z+x\) nữa.
Thay \(xy+yz+xz=1\) ta có: \(\hept{\begin{cases}1+x^2=xy+yz+xz+x^2=\left(x+z\right)\left(x+y\right)\\1+y^2=xy+yz+xz+y^2=\left(x+y\right)\left(y+z\right)\\1+z^2=xy+yz+xz+z^2=\left(x+z\right)\left(y+z\right)\end{cases}}\)
\(\Rightarrow S=x\left(y+z\right)+y\left(x+z\right)+z\left(x+y\right)=2\left(xy+yz+xz\right)=2\)
Ta có \(x^2+1=x^2+xy+yz+xz=\left(x+y\right)\left(x+z\right)\)
\(y^2+1=\left(y+z\right)\left(y+x\right)\)
\(z^2+1=\left(z+x\right)\left(z+y\right)\)
Khi đó
\(S=x.\sqrt{\left(y+z\right)^2}+y.\sqrt{\left(x+z\right)^2}+z.\sqrt{\left(x+y\right)^2}=2\left(xy+yz+xz\right)=2\)
a) Ta có : \(1+x^2=xy+yz+zx+x^2=x\left(x+y\right)+z\left(x+y\right)=\left(x+y\right)\left(z+x\right)\)
b) \(\Sigma\left(x\sqrt{\dfrac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}}\right)=\Sigma\left(x\sqrt{\dfrac{\left(x+y\right)\left(y+z\right).\left(x+z\right)\left(y+z\right)}{\left(x+y\right)\left(x+z\right)}}\right)\)
\(=\Sigma\left(x\left(y+z\right)\right)=xy+xz+xy+yz+zx+zy=2\left(xy+yz+zx\right)=2\)
\(xy+\sqrt{\left(1+x^2\right)\left(1+y^2\right)}=\sqrt{2000}\)
\(\Rightarrow x^2y^2+\left(1+x^2\right)\left(1+y^2\right)+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}=2000\)
\(\Rightarrow2x^2y^2+x^2+y^2+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}=1999\)
Ta có:
\(S^2=x^2\left(1+y^2\right)+y^2\left(1+x^2\right)+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\)
\(S^2=2x^2y^2+x^2+y^2+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\)
\(\Rightarrow S^2=1999\Rightarrow S=\pm\sqrt{1999}\)