\(A=x\sqrt{\dfrac{\left(1+y^2...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 11 2023

Ta có:

\(x^2+1=x^2+xy+yz+zx\)

           \(=x\left(x+y\right)+z\left(x+y\right)=\left(x+y\right)\left(x+z\right)\)

Tương tự:

\(\left\{{}\begin{matrix}y^2+1=\left(y+z\right)\left(y+x\right)\\z^2+1=\left(z+y\right)\left(z+x\right)\end{matrix}\right.\)

\(A=x\sqrt{\dfrac{\left(x+y\right)\left(y+z\right)\left(z+x\right)\left(y+z\right)}{\left(x+y\right)\left(z+x\right)}}+y\sqrt{\dfrac{\left(z+x\right)\left(y+z\right)\left(x+y\right)\left(z+x\right)}{\left(x+y\right)\left(y+z\right)}}+z\sqrt{\dfrac{\left(x+y\right)\left(z+x\right)\left(y+z\right)\left(x+y\right)}{\left(z+x\right)\left(y+z\right)}}\)

\(=x\left|y+z\right|+y\left|z+x\right|+z\left|x+y\right|\)

TH1: x,y,z <0

\(A=-x\left(y+z\right)-y\left(z+x\right)-z\left(x+y\right)=-2\)

TH2: x,y,z>0

\(A=x\left(y+z\right)+y\left(z+x\right)+z\left(x+y\right)=2\)

22 tháng 11 2023

Ta có \(1+z^2=xy+yz+zx+z^2\)

\(=y\left(x+z\right)+z\left(x+z\right)\)

\(=\left(x+z\right)\left(y+z\right)\)

CMTT, \(1+x^2=\left(x+y\right)\left(x+z\right)\) và \(1+y^2=\left(x+y\right)\left(y+z\right)\)

Do đó \(\sqrt{\dfrac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}}\) \(=\sqrt{\dfrac{\left(x+y\right)\left(y+z\right)\left(x+z\right)\left(y+z\right)}{\left(x+y\right)\left(x+z\right)}}\)

\(=\sqrt{\left(y+z\right)^2}\) \(=\left|y+z\right|\)

 Tương tự như thế, ta được

\(A=x\left|y+z\right|+y\left|z+x\right|+z\left|x+y\right|\)

 Cái này không tính ra số cụ thể được nhé bạn. Nó còn phải tùy vào dấu của \(x+y,y+z,z+x\) nữa.

9 tháng 9 2018

Ta có 1+x2 = xy + yz + xz +x2 = ( x+ z)(x+y)

TT : 1+y2 = (y+z)(y+x)

1+z2 = (z+x)(z+y)

⇒ P = 2

Vậy P =2

AH
Akai Haruma
Giáo viên
4 tháng 7 2018

Lời giải:

Ta thấy: \(xy+yz+xz=1\)

\(\Rightarrow \left\{\begin{matrix} 1+y^2=xy+yz+xz+y^2=(y+z)(y+x)\\ 1+x^2=xy+yz+xz+x^2=(x+y)(x+z)\\ 1+z^2=xy+yz+xz+z^2=(z+x)(z+y)\end{matrix}\right.\)

Do đó:

\(x\sqrt{\frac{(y^2+1)(z^2+1)}{1+x^2}}=x\sqrt{\frac{(y+x)(y+z)(z+x)(z+y)}{(x+y)(x+z)}}=x\sqrt{(y+z)^2}=x(y+z)\)

Hoàn toàn tt:

\(y\sqrt{\frac{(x^2+1)(z^2+1)}{y^2+1}}=y(x+z)\)

\(z\sqrt{\frac{(x^2+1)(y^2+1)}{z^2+1}}=z(x+y)\)

Cộng theo vế:

\(S=x(y+z)+y(x+z)+z(x+y)=2(xy+yz+xz)=2\)

17 tháng 1 2021

Lời giải:

Ta thấy: xy+yz+xz=1

⇒⎧⎪⎨⎪⎩1+y2=xy+yz+xz+y2=(y+z)(y+x)1+x2=xy+yz+xz+x2=(x+y)(x+z)1+z2=xy+yz+xz+z2=(z+x)(z+y)

Do đó:

x√(y2+1)(z2+1)1+x2=x√(y+x)(y+z)(z+x)(z+y)(x+y)(x+z)=x√(y+z)2=x(y+z)

Hoàn toàn tt:

y√(x2+1)(z2+1)y2+1=y(x+z) 

z√(x2+1)(y2+1)z2+1=z(x+y)

Cộng theo vế:

S=x(y+z)+y(x+z)+z(x+y)=2(xy+yz+xz)=2

AH
Akai Haruma
Giáo viên
7 tháng 1 2019

Lời giải:

Vì $xy+yz+xz=1$ nên:

\(x^2+1=x^2+xy+yz+xz=x(x+y)+z(x+y)=(x+z)(x+y)\)

\(y^2+1=y^2+xy+yz+xz=y(y+x)+z(y+x)=(y+z)(y+x)\)

\(z^2+1=z^2+xy+yz+xz=(z^2+xz)+(xy+yz)=z(z+x)+y(x+z)=(z+y)(z+x)\)

Do đó:

\(P=x\sqrt{\frac{(y+z)(y+x)(z+x)(z+y)}{(x+y)(x+z)}}+y\sqrt{\frac{(z+x)(z+y)(x+y)(x+z)}{(y+x)(y+z)}}+z\sqrt{\frac{(x+y)(x+z)(y+x)(y+z)}{(z+x)(z+y)}}\)

\(=x\sqrt{(y+z)^2}+y\sqrt{(x+z)^2}+z\sqrt{(x+y)^2}\)

\(=x(y+z)+y(x+z)+z(x+y)=2(xy+yz+xz)=2\)

7 tháng 1 2019

Lầy :v

AH
Akai Haruma
Giáo viên
20 tháng 3 2019

Lời giải:

Từ \(x+y+z=xyz\Rightarrow \frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}=1\)

Đặt \((\frac{1}{a}, \frac{1}{b}, \frac{1}{c})=(x,y,z)\), trong đó $a,b,c>0$ thì ta có:

\(ab+bc+ac=1\) và cần phải CMR:

\(P=\frac{\sqrt{(\frac{1}{b^2}+1)(\frac{1}{c^2}+1})-\sqrt{\frac{1}{b^2}+1}-\sqrt{\frac{1}{c^2}+1}}{\frac{1}{bc}}+\frac{\sqrt{(\frac{1}{c^2}+1)(\frac{1}{a^2}+1})-\sqrt{\frac{1}{c^2}+1}-\sqrt{\frac{1}{a^2}+1}}{\frac{1}{ac}}+\frac{\sqrt{(\frac{1}{a^2}+1)(\frac{1}{b^2}+1})-\sqrt{\frac{1}{a^2}+1}-\sqrt{\frac{1}{b^2}+1}}{\frac{1}{ab}}\)

-----------------------------------------------

Ta có:
\(\frac{\sqrt{(\frac{1}{b^2}+1)(\frac{1}{c^2}+1})-\sqrt{\frac{1}{b^2}+1}-\sqrt{\frac{1}{c^2}+1}}{\frac{1}{bc}}=\sqrt{(b^2+1)(c^2+1)}-b\sqrt{c^2+1}-c\sqrt{b^2+1}\)

\(=\sqrt{(b^2+ab+bc+ac)(c^2+ac+bc+ab)}-b\sqrt{c^2+ac+bc+ab}-c\sqrt{b^2+ab+bc+ac}\)

\(=\sqrt{(b+a)(b+c)(c+a)(c+b)}-b\sqrt{(c+a)(c+b)}-c\sqrt{(b+a)(b+c)}\)

\(=(b+c)\sqrt{(a+b)(a+c)}-b\sqrt{(c+a)(c+b)}-c\sqrt{(b+a)(b+c)}(1)\)

Tương tự:

\(\frac{\sqrt{(\frac{1}{c^2}+1)(\frac{1}{a^2}+1})-\sqrt{\frac{1}{c^2}+1}-\sqrt{\frac{1}{a^2}+1}}{\frac{1}{ac}}=(a+c)\sqrt{(b+a)(b+c)}-a\sqrt{(c+a)(c+b)}-c\sqrt{(a+b)(a+c)}(2)\)

\(\frac{\sqrt{(\frac{1}{a^2}+1)(\frac{1}{b^2}+1})-\sqrt{\frac{1}{a^2}+1}-\sqrt{\frac{1}{b^2}+1}}{\frac{1}{ab}}=(a+b)\sqrt{(c+a)(c+b)}-b\sqrt{(a+b)(a+c)}-a\sqrt{(b+c)(b+a)}(3)\)

Từ \((1);(2);(3)\Rightarrow P=(b+c-c-b)\sqrt{(a+b)(a+c)}+(a+c-c-a)\sqrt{(b+a)(b+c)}+(a+b-b-a)\sqrt{(c+a)(c+b)}\)

\(=0\)

Ta có đpcm.

22 tháng 3 2019

sao dòng 2 đoạn ''ta có...'' lại ra đc như thế ạ?

10 tháng 1 2017

Ta có: 

\(1+x^2=xy+yz+xz+x^2=\left(x+y\right)\left(x+z\right)\)

\(1+y^2=xy+yz+xz+y^2=\left(y+z\right)\left(x+y\right)\)

\(1+z^2=xy+yz+xz+z^2=\left(x+z\right)\left(y+z\right)\)

Thay vào T ta được:

\(T=x\sqrt{\frac{\left(y+z\right)\left(x+y\right)\left(x+z\right)\left(y+z\right)}{\left(x+y\right)\left(x+z\right)}}+y\sqrt{\frac{\left(x+z\right)\left(y+z\right)\left(x+y\right)\left(x+z\right)}{\left(y+z\right)\left(x+y\right)}}+z\sqrt{\frac{\left(x+y\right)\left(y+z\right)\left(x+z\right)\left(x+y\right)}{\left(x+z\right)\left(y+z\right)}}\)

\(=x\sqrt{\left(y+z\right)^2}+y\sqrt{\left(x+z\right)^2}+z\sqrt{\left(x+y\right)^2}\)

\(=x\left(y+z\right)+y\left(x+z\right)+z\left(x+y\right)\)

\(=xy+xz+xy+yz+xz+zy\)

\(=2\left(xy+yz+xz\right)=2\left(xy+yz+xz=1\right)\)

10 tháng 1 2017

Ta có \(1+x^2=x^2+xy+yz+zx=\left(x+y\right)\left(z+x\right)\).

Tương tự ta cũng có \(1+y^2=\left(x+y\right)\left(y+z\right)\) và \(1+z^2=\left(z+x\right)\left(y+z\right)\).

Thu gọn được \(T=x\left(y+z\right)+y\left(x+z\right)+z\left(x+y\right)=2\left(xy+yz+zx\right)=2\)

AH
Akai Haruma
Giáo viên
21 tháng 7 2017

Lời giải:

Ta có

\(xy+yz+xz=1\Rightarrow x^2+1=x^2+xy+yz+xz=(x+y)(x+z)\)

Tương tự: \(\left\{\begin{matrix} y^2+1=(y+z)(y+x)\\ z^2+1=(z+x)(z+y)\end{matrix}\right.\)

Do đó \(A=x\sqrt{\frac{(y+z)(y+x)(x+z)(z+y)}{(x+y)(x+z)}}+y\sqrt{\frac{(z+x)(z+y)(x+y)(x+z)}{(y+z)(y+x)}}+z\sqrt{\frac{(x+y)(x+z)(y+x)(y+z)}{(z+x)(z+y)}}\)

\(\Leftrightarrow A=x(y+z)+y(x+z)+z(x+y)=2(xy+yz+xz)=2\)

Vậy \(A=2\)

22 tháng 7 2017

tks

AH
Akai Haruma
Giáo viên
13 tháng 11 2023

Lời giải:

$xy+yz+xz=1$
$\Rightarrow x^2+1=x^2+xy+yz+xz=(x+y)(x+z)$

Tương tự: $y^2+1=(y+z)(y+x); z^2+1=(z+x)(z+y)$

Khi đó:

\(\sum \sqrt{\frac{(x^2+1)(y^2+1)}{z^2+1}}=\sum \sqrt{\frac{(x+y)(x+z)(y+x)(y+z)}{(z+x)(z+y)}}=\sum \sqrt{(x+y)^2}\)

$=\sum (x+y)=2(x+y+z)$