K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 3 2019

Thay \(xy+yz+xz=1\) ta có: \(\hept{\begin{cases}1+x^2=xy+yz+xz+x^2=\left(x+z\right)\left(x+y\right)\\1+y^2=xy+yz+xz+y^2=\left(x+y\right)\left(y+z\right)\\1+z^2=xy+yz+xz+z^2=\left(x+z\right)\left(y+z\right)\end{cases}}\)

\(\Rightarrow S=x\left(y+z\right)+y\left(x+z\right)+z\left(x+y\right)=2\left(xy+yz+xz\right)=2\)

26 tháng 8 2016

Ta có:

\(1+x^2=xy+yz+zx+x^2=\left(x+y\right)\left(x+z\right)\)

\(1+y^2=xy+yz+xz+y^2=\left(y+z\right)\left(x+y\right)\)

\(1+z^2=xy+yz+xz+z^2=\left(x+z\right)\left(y+z\right)\)

Thay vào A được:

\(P=x\sqrt{\frac{\left(y+z\right)\left(x+y\right)\left(x+z\right)\left(y+z\right)}{\left(x+y\right)\left(x+z\right)}}+y\sqrt{\frac{\left(x+z\right)\left(y+z\right)\left(x+y\right)\left(x+z\right)}{\left(y+z\right)\left(x+y\right)}}\)\(+z\sqrt{\frac{\left(x+y\right)\left(y+z\right)\left(x+z\right)\left(x+y\right)}{\left(x+z\right)\left(y+z\right)}}\)

\(=x\sqrt{\left(y+z\right)^2}+y\sqrt{\left(x+z\right)^2}+z\sqrt{\left(x+y\right)^2}\)

\(=x\left(y+z\right)+y\left(x+z\right)+z\left(x+y\right)\)

\(=xy+xz+xy+yz+xz+zy\)

\(=2\left(xy+yz+xz\right)\)

\(=2\)(do xy+yz+xz=1)

=>Đpcm

26 tháng 8 2016

Dạng toán này rất nhiều bạn hỏi rồi: thay \(xy+yz+zx=1\) vào các căn thức rồi phân tích đa thức thành nhân tử.

25 tháng 9 2018

Ta co: \(1+x^2=xy+yz+zx+x^2=\left(x+y\right)\left(x+z\right)\)

\(\Rightarrow\sqrt{\frac{\left(1+y^2\right)\left(1+z^2\right)}{\left(1+x^2\right)}}=\sqrt{\frac{\left(y+x\right)\left(y+z\right)\left(z+x\right)\left(z+y\right)}{\left(x+y\right)\left(x+z\right)}}=y+z\)

Thê vào ta được

\(A=x\left(y+z\right)+y\left(z+x\right)+z\left(x+y\right)=2\left(xy+yz+zx\right)=2\)

29 tháng 6 2019

Ta có \(x^2+1=x^2+xy+yz+xz=\left(x+y\right)\left(x+z\right)\)

\(y^2+1=\left(y+z\right)\left(y+x\right)\)

\(z^2+1=\left(z+x\right)\left(z+y\right)\)

Khi đó

\(S=x.\sqrt{\left(y+z\right)^2}+y.\sqrt{\left(x+z\right)^2}+z.\sqrt{\left(x+y\right)^2}=2\left(xy+yz+xz\right)=2\)

18 tháng 10 2018

Xét hạng tử: \(x\sqrt{\frac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}}\)

Thay \(xy+yz+zx=1\); ta có:

\(x\sqrt{\frac{\left(y^2+xy+yz+zx\right)\left(z^2+xy+yz+zx\right)}{x^2+xy+yz+zx}}=x\sqrt{\frac{\left(x+y\right)\left(y+z\right)^2\left(x+z\right)}{\left(x+y\right)\left(x+z\right)}}\)

\(=x\sqrt{\left(y+z\right)^2}=xy+xz\)

Tượng tự: \(y\sqrt{\frac{\left(1+z^2\right)\left(1+x^2\right)}{1+y^2}}=xy+yz;z\sqrt{\frac{\left(1+x^2\right)\left(1+y^2\right)}{1+z^2}}=xz+yz\)

Do đó: \(A=2\left(xy+yz+zx\right)=2.1=2\)

ĐS:...

10 tháng 1 2017

Ta có: 

\(1+x^2=xy+yz+xz+x^2=\left(x+y\right)\left(x+z\right)\)

\(1+y^2=xy+yz+xz+y^2=\left(y+z\right)\left(x+y\right)\)

\(1+z^2=xy+yz+xz+z^2=\left(x+z\right)\left(y+z\right)\)

Thay vào T ta được:

\(T=x\sqrt{\frac{\left(y+z\right)\left(x+y\right)\left(x+z\right)\left(y+z\right)}{\left(x+y\right)\left(x+z\right)}}+y\sqrt{\frac{\left(x+z\right)\left(y+z\right)\left(x+y\right)\left(x+z\right)}{\left(y+z\right)\left(x+y\right)}}+z\sqrt{\frac{\left(x+y\right)\left(y+z\right)\left(x+z\right)\left(x+y\right)}{\left(x+z\right)\left(y+z\right)}}\)

\(=x\sqrt{\left(y+z\right)^2}+y\sqrt{\left(x+z\right)^2}+z\sqrt{\left(x+y\right)^2}\)

\(=x\left(y+z\right)+y\left(x+z\right)+z\left(x+y\right)\)

\(=xy+xz+xy+yz+xz+zy\)

\(=2\left(xy+yz+xz\right)=2\left(xy+yz+xz=1\right)\)

10 tháng 1 2017

Ta có \(1+x^2=x^2+xy+yz+zx=\left(x+y\right)\left(z+x\right)\).

Tương tự ta cũng có \(1+y^2=\left(x+y\right)\left(y+z\right)\) và \(1+z^2=\left(z+x\right)\left(y+z\right)\).

Thu gọn được \(T=x\left(y+z\right)+y\left(x+z\right)+z\left(x+y\right)=2\left(xy+yz+zx\right)=2\)

17 tháng 5 2018

a) Ta có : \(1+x^2=xy+yz+zx+x^2=x\left(x+y\right)+z\left(x+y\right)=\left(x+y\right)\left(z+x\right)\)

b) \(\Sigma\left(x\sqrt{\dfrac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}}\right)=\Sigma\left(x\sqrt{\dfrac{\left(x+y\right)\left(y+z\right).\left(x+z\right)\left(y+z\right)}{\left(x+y\right)\left(x+z\right)}}\right)\)

\(=\Sigma\left(x\left(y+z\right)\right)=xy+xz+xy+yz+zx+zy=2\left(xy+yz+zx\right)=2\)

14 tháng 6 2019

bài lớp mấy mà khó dữ

Ta có : \(xy+yz+zx=1\)

\(\Rightarrow\hept{\begin{cases}1+x^2=xy+yz+zx+x^2=\left(x+y\right)\left(x+z\right)\\1+y^2=xy+yz+zx+y^2=\left(y+x\right)\left(y+z\right)\\1+z^2=xy+yz+zx+z^2=\left(z+x\right)\left(z+y\right)\end{cases}}\)

Do đó :

\(\sqrt{\frac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}}=\sqrt{\frac{\left(y+x\right)\left(y+z\right)\left(z+x\right)\left(z+y\right)}{\left(x+y\right)\left(x+z\right)}}=\sqrt{\left(y+z\right)^2}\)\(=y+z\)

\(x\sqrt{\frac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}}=x\left(y+z\right)\)

Hoàn toàn tương tự :

\(y\sqrt{\frac{\left(1+z^2\right)\left(1+x^2\right)}{1+y^2}}=y\left(z+x\right)\)

\(z\sqrt{\frac{\left(1+x^2\right)\left(1+y^2\right)}{1+z^2}}=z\left(x+y\right)\)

Do đó :

\(A=x\left(y+z\right)+y\left(z+x\right)+z\left(x+y\right)\)

\(=2\left(xy+yz+zx\right)=2\)

16 tháng 9 2015

\(x\sqrt{\frac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}}=x\sqrt{\frac{\left(xy+yz+xz+y^2\right)\left(xy+yz+xz+z^2\right)}{xy+yz+xz+x^2}}=x\sqrt{\frac{\left(y+z\right)\left(x+y\right)\left(y+z\right)\left(x+z\right)}{\left(x+y\right)\left(x+z\right)}}=x\sqrt{\left(y+z\right)^2}=x\left(y+z\right)\)

tương tự ta có

\(y\sqrt{\frac{\left(1+x^2\right)\left(1+z^2\right)}{1+y^2}}=y\left(x+z\right)\)\(z\sqrt{\frac{\left(1+x^2\right)\left(1+y^2\right)}{1+z^2}}=z\left(x+y\right)\)

do đó \(A=x\left(y+z\right)+y\left(x+z\right)+z\left(x+y\right)=2\left(xy+yz+xz\right)=2.1=2\)

vậy A=2