tính :
a.(1/3)^5.3^5
b.(1,5)^3.8
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(\frac{1}{3}\right)^5\cdot3^5=\left(\frac{1}{3}\cdot3\right)^5=1^5=1\)
b) \(\left(\frac{3}{2}\right)^3\cdot2^3=\left(\frac{3}{2}\cdot2\right)^3=3^3=27\)
a)
\(\left(\frac{1}{3}\right)^5.3^5=\left(\frac{1}{3}.3\right)^5=1^5=1\)
b)
\(\left(1,5\right)^3.8^3=\left(1,5\right)^3.2^3=\left[\left(1,5\right).2\right]^3=3^3=27\)
\(A=\dfrac{3}{1\cdot4}+\dfrac{3}{2\cdot6}+\dfrac{3}{3\cdot8}+...+\dfrac{1}{2012\cdot1342}\\ =\dfrac{3}{1\cdot4}+\dfrac{3}{2\cdot6}+\dfrac{3}{3\cdot8}+...+\dfrac{3}{2012\cdot4026}\\ =\dfrac{6}{2\cdot4}+\dfrac{6}{4\cdot6}+\dfrac{6}{6\cdot8}+...+\dfrac{6}{4024\cdot4026}\\ =3\cdot\left(\dfrac{2}{2\cdot4}+\dfrac{2}{4\cdot6}+\dfrac{2}{6\cdot8}+...+\dfrac{2}{4024\cdot4026}\right)\\ =3\cdot\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{8}+...+\dfrac{1}{4024}-\dfrac{1}{4026}\right)\\ =3\cdot\left(\dfrac{1}{2}-\dfrac{1}{4026}\right)\\ =3\cdot\dfrac{1}{2}-3\cdot\dfrac{1}{4026}\\ =1,5-\dfrac{3}{4026}< 1,5\)
Vậy \(A< 1,5\left(đpcm\right)\)
a) 2,5x9,3x4=(2,5x4)x9,3=10x9,3=93
b) 0,5x3,8x2=(0,5x2)x3,8=1x3,8=3,8
c)7,61x5x0,2=7,61x(5x0,2)=7,61x1=7,61
d) 5,3x6,7+6,7x4,7=6,7x(5,3+4,7)=6,7x10=67
a \(\dfrac{3}{8}\times\dfrac{5}{2}+\dfrac{5}{8}\times\dfrac{5}{2}=\dfrac{5}{2}\left(\dfrac{3}{5}+\dfrac{5}{8}\right)=\dfrac{5}{2}\times\dfrac{8}{8}=\dfrac{5}{2}\times1=\dfrac{5}{2}\)
b \(33.12\times0=0\)
A = \(\dfrac{1}{1.2}\) + \(\dfrac{1}{2.3}\)+ \(\dfrac{1}{3.2}\)+ ....+ \(\dfrac{1}{50.51}\)
A = \(\dfrac{1}{1}\) - \(\dfrac{1}{2}\)+ \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) - \(\dfrac{1}{2}\)+...+ \(\dfrac{1}{50}\) - \(\dfrac{1}{51}\)
A = \(\dfrac{1}{1}\) - \(\dfrac{1}{51}\)
A = \(\dfrac{50}{51}\)
a,\(2^4\cdot3^5:6^4\)
\(=\frac{2^4\cdot3^6}{\left(2\cdot3\right)^4}\)
\(=\frac{2^4\cdot3^6}{2^4\cdot3^4}\)
\(=3^2\)
Bài 2
\(a,5^3\cdot8=5^3\cdot2^3=10^3=1000\)
\(b,2^5-2019^0=32-1=31\)
\(c,3^3+2^5-1^{10}=27+32-1=58\).
\(d,9^2\cdot33-81\cdot23+5^2=81\cdot33-81\cdot23+25\)
\(=81\cdot\left(33-23\right)+25\)
\(=810+25=835\)
\(g,\left[2^2+6^2\right]:5+11^2\)
\(=\left[4+36\right]:5+121\)
\(=40:5+121=8+121\)
\(=129\)
\(d,\frac{14\cdot3^{10}-5\cdot3^{10}}{3^{12}}\)
\(=\frac{3^{10}\cdot\left(14-5\right)}{3^{12}}\)
\(=\frac{3^{10}\cdot9}{3^{12}}\)
\(=\frac{3^{10}\cdot3^2}{3^{12}}=\frac{3^{12}}{3^{12}}\)
\(=1\)
a/ (1/3)^5 . 3^5 = 1/243 . 243 = 1
b/ (1,5)^3 .8 = 3,375 . 8= 27