Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\left(\frac{1}{3}\right)^5.3^5=\left(\frac{1}{3}.3\right)^3=1^5=1\)
\(\left(1,5\right)^3.8=\left(1,5\right)^3.2^3=\left(1,5.2\right)^3=3^3=27\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Gửi tạm trước 2 câu !
\(a,\text{ }3^2\cdot\frac{1}{243}\cdot81^2\cdot3^{-3}=3^2\cdot\frac{1}{3^5}\cdot\left(3^4\right)^2\cdot\frac{1}{3^3}=3^2\cdot\frac{1}{3^5}\cdot3^8\cdot\frac{1}{3^3}=3^2=9\)\(b,\text{ }\frac{\left(-3\right)^{10}\cdot15^5}{25^3\cdot\left(-9\right)^7}=\frac{3^{10}\cdot\left(3\cdot5\right)^5}{\left(5^2\right)^3\cdot\left(-3\cdot3\right)^7}=\frac{3^{10}\cdot3^5\cdot5^5}{5^6\cdot3^7\cdot\left(-3\right)^7}=\frac{3^{15}\cdot5^5}{5^6\cdot3^7\cdot\left(-3\right)^7}=\frac{3}{-5}\)
Trả lời :
\(a,\text{ }3^2\cdot\frac{1}{243}\cdot81^2\cdot3^{-3}=3^2\cdot\frac{1}{3^5}\cdot\left(3^4\right)^2\cdot\frac{1}{3^3}=3^2\cdot\frac{1}{3^5}\cdot3^8\cdot\frac{1}{3^3}=3^2=9\)\(b,\text{ }\frac{\left(-3\right)^{10}\cdot15^5}{25^3\cdot\left(-9\right)^7}=\frac{3^{10}\cdot\left(3\cdot5\right)^5}{\left(5^2\right)^3\cdot\left(-3\cdot3\right)^7}=\frac{3^{10}\cdot3^5\cdot5^5}{5^6\cdot3^7\cdot\left(-3\right)^7}=\frac{3^{15}\cdot5^5}{5^6\cdot3^7\cdot\left(-3\right)^7}=\frac{3}{-5}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a, \(125^3:5^7=\left(5^3\right)^3:5^7=5^9:5^7=5^2\)
b, \(\left(\dfrac{2}{7}\right)^{18}:\left(\dfrac{4}{49}\right)^5:\left(\dfrac{8}{343}\right)^2\)
= \(\left(\dfrac{2}{7}\right)^{18}:\left(\dfrac{2^2}{7^2}\right)^5:\left(\dfrac{2^3}{7^3}\right)^2\)
= \(\left(\dfrac{2}{7}\right)^{18}:\left[\left(\dfrac{2}{7}\right)^2\right]^5:\left[\left(\dfrac{2}{7}\right)^3\right]^2\)
=\(\left(\dfrac{2}{7}\right)^{18}:\left(\dfrac{2}{7}\right)^{10}:\left(\dfrac{2}{7}\right)^6\)
= \(\left(\dfrac{2}{7}\right)^{18-10-6}=\left(\dfrac{2}{7}\right)^2\)
c, \(3-\left(\dfrac{-7}{9}\right)^0+\left(\dfrac{1}{3}\right)^5.3^5\)
= 3 - 1 +\(\left[\left(\dfrac{1}{3}\right)^5.3^5\right]\)
= 2 + 1=3
d, \(\dfrac{45^{10}.5^{20}}{75^{15}}=\dfrac{\left(9.5\right)^{10}.5^{20}}{\left(25.3\right)^{15}}=\dfrac{\left(3^2\right)^{10}.5^{10}.5^{20}}{\left(5^2\right)^{15}.3^{15}}\)
= \(\dfrac{3^{20}.5^{30}}{5^{30}.3^{15}}=3^5\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bây giờ tạm gọi các biểu thức ở mỗi bài lần lượt là A;B;C;...
a/\(A=3^2.\frac{1}{3^5}.3^8.\frac{1}{3^3}=3^2=9\)
b/\(B=\frac{3^{10}.3^5.5^5}{-5^6.3^{14}}=\frac{-3}{5}\)
c/\(C=2^3+3.1-\frac{1}{2^2}.2^2+\frac{2^2}{2}.2^3=8+3-1+16=26\)
d/\(D=\frac{3^4}{2^8}.\frac{2^{12}}{3^8}=\frac{2^4}{3^4}=\frac{16}{81}\)
e/\(E=\frac{-31^3}{2^9}.\frac{2^{20}}{31^4}=\frac{-2^{11}}{31}=\frac{-2048}{31}\)
f/\(F=\frac{-3^5}{2^{10}}.\frac{2^{20}}{3^{10}}=\frac{-2^{10}}{3^5}=\frac{-1024}{243}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(A=2^{24}=\left(2^3\right)^8=8^8.\)(1)
\(B=3^{16}=\left(3^2\right)^8=9^8\)(2)
Từ (1) và (2) \(\Rightarrow A< B\)
Vậy \(A< B.\)
b) \(B=\left(0,3\right)^{30}=\left(0,3^2\right)^{15}=0,09^{15}\)(1)
\(A=\left(0,1\right)^{15}\)(2)
Từ (1) và (2) \(\Rightarrow A>B\)
Vậy \(A>B.\)
c) \(A=\left(\frac{-1}{4}\right)^8=\left(\frac{1}{4}\right)^8=\left[\left(\frac{1}{2}\right)^2\right]^8=\left(\frac{1}{2}\right)^{16}\)(1)
\(B=\left(\frac{1}{8}\right)^5=\left[\left(\frac{1}{2}\right)^3\right]^5=\left(\frac{1}{2}\right)^{15}\)(2)
Từ (1) và (2) \(\Rightarrow A>B\)
Vậy \(A>B.\)
d) \(A=102^7=102^6.102\)(1)
\(B=9^{13}=9^{12}.9=\left(9^2\right)^6.9=81^6.9\)(2)'
Từ (1) và (2) \(\Rightarrow A>B\)
Vậy \(A>B.\)
e) \(8A=8\frac{8^{18}+1}{8^{19}+1}=\frac{8^{19}+8}{8^{19}+1}=1+\frac{7}{8^{19}+1}\)(1)
\(8B=8\frac{8^{23}+1}{8^{24+1}}=\frac{8^{24}+8}{8^{24}+1}=1+\frac{7}{8^{24}+1}\)(2)
Từ (1) và (2) \(\Rightarrow8A>8B\Rightarrow A>B\)
Vậy \(A>B.\)
f) \(A=\frac{5^5}{5+5^2+5^3+5^4}=\frac{5^4}{1+5+5^2+5^3}=\frac{625}{156}>\frac{468}{156}=3.\)(1)
\(B=\frac{3^5}{3+3^2+3^3+3^4}=\frac{3^4}{1+3+3^2+3^3}=\frac{81}{40}< \frac{120}{40}=3.\)(2)
Từ (1) và (2) \(\Rightarrow A>B\)
Vậy \(A>B.\)
a, ta có A=2^24=64^4
B=3^16=81^4
Vì 64^4<81^4
Vậy 2^24<3^36
b, ta có A=0,1^15
B=0,3^30=0,09^15
Vì 0,1^15< 0,09^15
Vậy 0,1^15<0,3^30
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(\frac{21}{47}+\frac{9}{45}+\frac{26}{47}+\frac{4}{5}\)
\(=\left(\frac{21}{47}+\frac{26}{47}\right)+\left(\frac{9}{45}+\frac{4}{5}\right)\)
\(=\frac{47}{47}+\left(\frac{1}{5}+\frac{4}{5}\right)\)
\(=1+1=2\)
b) \(12.\left(-\frac{2}{3}\right)^2+\frac{4}{3}\)
\(=12.\frac{4}{9}+\frac{4}{3}\)
\(=\frac{16}{3}+\frac{4}{3}\)
\(=\frac{20}{3}\)
c) \(12,5.\left(-\frac{5}{7}\right)+15.\left(-\frac{5}{7}\right)\)
\(=\left(-\frac{5}{7}\right).\left(12,5+15\right)\)
\(=\left(-\frac{5}{7}\right).27,5\)
\(=\left(-\frac{5}{7}\right).\frac{55}{2}\)
\(=-\frac{275}{14}\)
d) \(\frac{4}{5}.\left(\frac{7}{2}+\frac{1}{4}\right)^2\)
\(=\frac{4}{5}.\left(\frac{14}{4}+\frac{1}{4}\right)^2\)
\(=\frac{4}{5}.\left(\frac{15}{4}\right)^2\)
\(=\frac{4}{5}.\frac{225}{16}\)
\(=\frac{45}{4}\)
a)\(\frac{21}{47}+\frac{9}{45}+\frac{26}{47}+\frac{4}{5}\)
=\(\frac{21}{47}+\frac{1}{5}+\frac{26}{47}+\frac{4}{5}\)
=\(\left(\frac{21}{47}+\frac{26}{47}\right)+\left(\frac{1}{5}+\frac{4}{5}\right)\)
=\(\frac{47}{47}+\frac{5}{5}=1+1=2\)
b)\(12.\left(-\frac{2}{3}\right)^2+\frac{4}{3}\)
=\(12.\frac{4}{9}+\frac{4}{3}\)
=\(\frac{12}{1}.\frac{4}{9}+\frac{4}{3}=\frac{48}{9}+\frac{4}{3}\)
=\(\frac{16}{3}+\frac{4}{3}=\frac{20}{3}\)
c)\(12,5.\left(-\frac{5}{7}\right)+1,5.\left(-\frac{5}{7}\right)\)
=\(\left(-\frac{5}{7}\right).\left(12,5+1,5\right)\)
=\(\left(-\frac{5}{7}\right).14=\left(-\frac{5}{7}\right).\frac{14}{1}=-10\)
d)\(\frac{4}{5}.\left(\frac{7}{2}+\frac{1}{4}\right)^2\)
=\(\frac{4}{5}.\left(\frac{14}{4}+\frac{1}{4}\right)^2\)
=\(\frac{4}{5}.\left(\frac{15}{4}\right)^2\)
=\(\frac{4}{5}.\frac{225}{16}\)
=\(\frac{900}{80}=\frac{45}{4}\)
Nhớ tick cho mình nha!
![](https://rs.olm.vn/images/avt/0.png?1311)
a: \(=-5^{14}\cdot5^4\cdot2^7=-5^{18}\cdot2^7\)
b: \(=4^4\cdot4^8=4^{12}=2^{24}\)
c: \(=-\dfrac{5^3\cdot5^6}{2^3\cdot2^6}=-\dfrac{5^9}{2^9}\)
d: \(=-\left(\dfrac{25}{36}\right)^3\)
a) \(\left(\frac{1}{3}\right)^5\cdot3^5=\left(\frac{1}{3}\cdot3\right)^5=1^5=1\)
b) \(\left(\frac{3}{2}\right)^3\cdot2^3=\left(\frac{3}{2}\cdot2\right)^3=3^3=27\)
a)
\(\left(\frac{1}{3}\right)^5.3^5=\left(\frac{1}{3}.3\right)^5=1^5=1\)
b)
\(\left(1,5\right)^3.8^3=\left(1,5\right)^3.2^3=\left[\left(1,5\right).2\right]^3=3^3=27\)