K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 9 2016

Ta có : \(A=3-x^2+2x-\left|y-3\right|=-\left(x^2-2x+1\right)+4-\left|y-3\right|=-\left[\left(x-1\right)^2+\left|y-3\right|\right]+4\)

Mà \(\begin{cases}\left(x-1\right)^2\ge0\\\left|y-3\right|\ge0\end{cases}\) \(\Rightarrow\left(x-1\right)^2+\left|y-3\right|\ge0\Rightarrow-\left[\left(x-1\right)^2+\left|y-3\right|\right]\le0\)

\(\Rightarrow A\le4\)

Dấu "=" xảy ra khi (x;y) = (1;3)

Vậy A đạt giá trị lớn nhất bằng 4 tại (x;y) = (1;3)

22 tháng 9 2016

cảm ơn

 

24 tháng 10 2021

\(B=2x\left(x-4\right)-10=2x^2-8x-10\)

\(=2\left(x^2-4x+4\right)-18=2\left(x-2\right)^2-18\ge-18\)

\(minB=-18\Leftrightarrow x=2\)

NV
5 tháng 10 2021

Biểu thức này không có min và cũng không có max

19 tháng 8 2021

\(A=-2x^2+6x-12\)

\(=-2\left(x^2-3x+\dfrac{9}{4}\right)-\dfrac{15}{2}\)

\(=-2\left(x-\dfrac{3}{2}\right)^2-\dfrac{15}{2}\le-\dfrac{15}{2}\)

\(maxA=-\dfrac{15}{2}\Leftrightarrow x=\dfrac{3}{2}\)

Ta có: \(A=-2x^2+6x-12\)

\(=-2\left(x^2-3x+6\right)\)

\(=-2\left(x^2-2\cdot x\cdot\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{15}{4}\right)\)

\(=-2\left(x-\dfrac{3}{2}\right)^2-\dfrac{15}{2}\le-\dfrac{15}{2}\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{3}{2}\)

1 tháng 11 2021

\(A=y-2y^2+4040=-2\left(y^2-\dfrac{y}{2}+\dfrac{1}{16}\right)+\dfrac{32321}{8}\)

\(=-2\left(y-\dfrac{1}{4}\right)^2+\dfrac{32321}{8}\le\dfrac{32321}{8}\)

\(maxA=\dfrac{32321}{8}\Leftrightarrow y=\dfrac{1}{4}\)

21 tháng 7 2021

Đúng thì like giúp mik nha. Thx bạnundefined

NV
21 tháng 7 2021

\(A=xy+xz+2yz+2xz=x\left(y+z\right)+2z\left(x+y\right)\)

\(=x\left(6-x\right)+2z\left(6-z\right)=-x^2+6x+2\left(-z^2+6z\right)\)

\(=-\left(x-3\right)^2-2\left(z-3\right)^2+27\le27\)

\(A_{max}=27\) khi \(\left(x;y;z\right)=\left(3;0;3\right)\)

AH
Akai Haruma
Giáo viên
4 tháng 1 2021

Bạn tham khảo lời giải tại đây:

cho \(x,y,z\ge0\) thỏa mãn \(x y z=6\). tìm GTLN và GTNN của biểu thức \(A=x^2 y^2 z^2\) - Hoc24

\(2\left|x+1\right|+\left|2x-3\right|\)

\(=\left|2x+2\right|+\left|2x-3\right|\)

\(=\left|2x+2-2x+3\right|\ge5\)

\(A_{min}=5\)

19 tháng 1 2017

Amin= 5 ? khi đó x bằng mấy?

3 tháng 12 2021

a, \(A=\left|x+2\right|+3\ge3\)

dấu "=" xảy ra\(\Leftrightarrow x=-2\)

Vậy \(A_{min}=3\Leftrightarrow x=-2\)

b,\(B=5+\left|2x-7\right|\ge5\)

dấu "=" xảy ra\(\Leftrightarrow x=\dfrac{7}{2}\)

Vậy \(B_{min}=5\Leftrightarrow x=\dfrac{7}{2}\)

c, \(-\left|4x+5\right|+1\le1\)

dấu "=" xảy ra\(\Leftrightarrow x=-\dfrac{5}{4}\)

Vậy \(C_{max}=1\Leftrightarrow x=-\dfrac{5}{4}\)

d, \(D=3-\left|x+3\right|\le3\)

dấu "=" xảy ra\(\Leftrightarrow x=-3\)

Vậy \(D_{max}=3\Leftrightarrow x=-3\)

a: -1<=cos2x<=1

=>3>=-3cos2x>=-3

=>7>=-3cos2x+4>=1

=>7>=y>=1

\(y_{min}=1\) khi \(cos2x=1\)

=>2x=k2pi

=>x=kpi

\(y_{max}=-1\) khi cos2x=-1

=>2x=pi+k2pi

=>x=pi/2+kpi

b: \(0< =sin^2x< =1\)

=>\(3< =sin^2x+3< =4\)

=>3<=y<=4

y min=3 khi sin^2x=0

=>sinx=0

=>x=kpi

y max=4 khi sin^2x=1

=>cos^2x=0

=>x=pi/2+kpi

c: \(y=sin2x+3\)

-1<=sin2x<=1

=>-1+3<=sin2x+3<=1+3

=>2<=y<=4

\(y_{min}=2\) khi sin 2x=-1

=>2x=-pi/2+k2pi

=>x=-pi/4+kpi

y max=4 khi sin2x=1

=>2x=pi/2+k2pi

=>x=pi/4+kpi