\(y=4-3\cos2x\).

b, \(y=sin^2x+3\)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: -1<=cos2x<=1

=>3>=-3cos2x>=-3

=>7>=-3cos2x+4>=1

=>7>=y>=1

\(y_{min}=1\) khi \(cos2x=1\)

=>2x=k2pi

=>x=kpi

\(y_{max}=-1\) khi cos2x=-1

=>2x=pi+k2pi

=>x=pi/2+kpi

b: \(0< =sin^2x< =1\)

=>\(3< =sin^2x+3< =4\)

=>3<=y<=4

y min=3 khi sin^2x=0

=>sinx=0

=>x=kpi

y max=4 khi sin^2x=1

=>cos^2x=0

=>x=pi/2+kpi

c: \(y=sin2x+3\)

-1<=sin2x<=1

=>-1+3<=sin2x+3<=1+3

=>2<=y<=4

\(y_{min}=2\) khi sin 2x=-1

=>2x=-pi/2+k2pi

=>x=-pi/4+kpi

y max=4 khi sin2x=1

=>2x=pi/2+k2pi

=>x=pi/4+kpi

NV
12 tháng 7 2020

1. Ta có: \(-1\le sinx\le1\)

\(\Rightarrow-3\le y\le3\) (hàm đã cho đồng biến trên \(\left[-\frac{\pi}{2};\frac{\pi}{2}\right]\)

\(y_{min}=-3\) khi \(sinx=-1\)

\(y_{max}=3\) khi \(sinx=1\)

2.

\(y=1-sin^2x-2sinx=2-\left(sinx+1\right)^2\)

Do \(-1\le sinx\le1\Rightarrow0\le sinx+1\le2\)

\(\Rightarrow-2\le y\le2\)

\(y_{min}=-2\) khi \(sinx=1\)

\(y_{max}=2\) khi \(sinx=-1\)

3.

\(y=1-cos^2x+cos^4x=\left(cos^2x-\frac{1}{2}\right)^2+\frac{3}{4}\)

\(\Rightarrow y\ge\frac{3}{4}\Rightarrow y_{min}=\frac{3}{4}\) khi \(cos^2x=\frac{1}{2}\)

\(y=1+cos^2x\left(cos^2x-1\right)\le1\) do \(cos^2x-1\le0\)

\(\Rightarrow y_{max}=1\) khi \(\left[{}\begin{matrix}cos^2x=1\\cos^2x=0\end{matrix}\right.\)

4.

\(y=\left(sin^2x+cos^2x\right)^2-2\left(sinx.cosx\right)^2+sinx.cosx\)

\(y=1-\frac{1}{2}sin^22x+\frac{1}{2}sin2x\)

\(y=\frac{9}{8}-\frac{1}{2}\left(sinx-\frac{1}{2}\right)^2\le\frac{9}{8}\)

\(y_{max}=\frac{9}{8}\) khi \(sinx=\frac{1}{2}\)

\(y=\frac{1}{2}\left(sinx+1\right)\left(2-sinx\right)\ge0;\forall x\)

\(\Rightarrow y_{min}=0\) khi \(sinx=-1\)

NV
16 tháng 6 2019

Câu 1:

\(y=S\left(\frac{3-S^2}{2}\right)=\frac{3}{2}S-\frac{1}{2}S^3\)

Khi \(S\rightarrow+\infty\) thì \(y\rightarrow-\infty\)

Khi \(S\rightarrow-\infty\) thì \(y\rightarrow+\infty\)

Hàm số không có GTLN và GTNN

Câu 2:

\(y=sin^4x+cos^4x+2sin^2x.cos^2x-2sin^2x.cos^2x\)

\(y=\left(sin^2x+cos^2x\right)^2-\frac{1}{2}\left(2sinx.cosx\right)^2\)

\(y=1-\frac{1}{2}sin^22x\)

Do \(0\le sin^22x\le1\)

\(\Rightarrow y_{max}=1\) khi \(sin2x=0\)

\(y_{min}=\frac{1}{2}\) khi \(sin2x=\pm1\)

NV
16 tháng 6 2019

Câu 3:

\(y=sin^6x+cos^6x+3sin^2x.cos^2x\left(sin^2x+cos^2x\right)-3sin^2x.cos^2x\left(sin^2x+cos^2x\right)\)

\(y=\left(sin^2x+cos^2x\right)^3-3sin^2x.cos^2x\)

\(y=1-\frac{3}{4}sin^22x\)

Do \(0\le sin^22x\le1\)

\(\Rightarrow y_{max}=1\) khi \(sin2x=0\)

\(y_{min}=\frac{1}{4}\) khi \(sin2x=\pm1\)

Câu 4:

\(y=\frac{cosx+2sinx+3}{2cosx-sinx+4}\)

\(\Leftrightarrow2y.cosx-y.sinx+4y=cosx+2sinx+3\)

\(\Leftrightarrow\left(y+2\right)sinx+\left(1-2y\right)cosx=4y-3\)

Theo điều kiện có nghiệm của pt lượng giác bậc nhất:

\(\left(y+2\right)^2+\left(1-2y\right)^2\ge\left(4y-3\right)^2\)

\(\Leftrightarrow11y^2-24y+4\le0\)

\(\Leftrightarrow\frac{2}{11}\le y\le2\)

18 tháng 5 2017

Hàm số lượng giác, phương trình lượng giác

Hàm số lượng giác, phương trình lượng giác

5 tháng 9 2020

2cos^2x+2cos^2(2x)+4cos^3(2x)-3cos2x=5

NV
5 tháng 9 2020

e/

\(2cos^2x+2cos^22x+4cos^32x-3cos2x=5\)

\(\Leftrightarrow1+cos2x+2cos^22x+4cos^32x-3cos2x=5\)

\(\Leftrightarrow2cos^32x+cos^22x-cos2x-2=0\)

\(\Leftrightarrow\left(cos2x-1\right)\left(2cos^22x+3cos2x+2\right)=0\)

\(\Leftrightarrow cos2x=1\)

\(\Leftrightarrow x=k\pi\)

4 tháng 7 2017

a) Ta có:

\(y=2\left(\dfrac{1}{2}cosx-\dfrac{\sqrt{3}}{2}sinx\right)=2sin\left(\dfrac{\pi}{6}-x\right)\)

\(\Rightarrow-2\le y\le2\) (Do \(-1\le sin\alpha\le1\))

Vậy min y = -2 , max y = 2