Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
\(y=S\left(\frac{3-S^2}{2}\right)=\frac{3}{2}S-\frac{1}{2}S^3\)
Khi \(S\rightarrow+\infty\) thì \(y\rightarrow-\infty\)
Khi \(S\rightarrow-\infty\) thì \(y\rightarrow+\infty\)
Hàm số không có GTLN và GTNN
Câu 2:
\(y=sin^4x+cos^4x+2sin^2x.cos^2x-2sin^2x.cos^2x\)
\(y=\left(sin^2x+cos^2x\right)^2-\frac{1}{2}\left(2sinx.cosx\right)^2\)
\(y=1-\frac{1}{2}sin^22x\)
Do \(0\le sin^22x\le1\)
\(\Rightarrow y_{max}=1\) khi \(sin2x=0\)
\(y_{min}=\frac{1}{2}\) khi \(sin2x=\pm1\)
Câu 3:
\(y=sin^6x+cos^6x+3sin^2x.cos^2x\left(sin^2x+cos^2x\right)-3sin^2x.cos^2x\left(sin^2x+cos^2x\right)\)
\(y=\left(sin^2x+cos^2x\right)^3-3sin^2x.cos^2x\)
\(y=1-\frac{3}{4}sin^22x\)
Do \(0\le sin^22x\le1\)
\(\Rightarrow y_{max}=1\) khi \(sin2x=0\)
\(y_{min}=\frac{1}{4}\) khi \(sin2x=\pm1\)
Câu 4:
\(y=\frac{cosx+2sinx+3}{2cosx-sinx+4}\)
\(\Leftrightarrow2y.cosx-y.sinx+4y=cosx+2sinx+3\)
\(\Leftrightarrow\left(y+2\right)sinx+\left(1-2y\right)cosx=4y-3\)
Theo điều kiện có nghiệm của pt lượng giác bậc nhất:
\(\left(y+2\right)^2+\left(1-2y\right)^2\ge\left(4y-3\right)^2\)
\(\Leftrightarrow11y^2-24y+4\le0\)
\(\Leftrightarrow\frac{2}{11}\le y\le2\)
6.
\(\Leftrightarrow\left(sin^2x+cos^2x\right)^3-3sin^2x.cos^2x\left(sin^2x+cos^2x\right)+\frac{1}{2}sinx.cosx=0\)
\(\Leftrightarrow1-3sin^2x.cos^2x+\frac{1}{2}sinx.cosx=0\)
\(\Leftrightarrow1-\frac{3}{4}sin^22x+\frac{1}{4}sin2x=0\)
\(\Leftrightarrow-3sin^22x+sin2x+4=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sin2x=-1\\sin2x=\frac{4}{3}>1\left(l\right)\end{matrix}\right.\)
\(\Rightarrow2x=-\frac{\pi}{2}+k2\pi\)
\(\Rightarrow x=-\frac{\pi}{4}+k\pi\)
5.
\(\Leftrightarrow\left(sin^2x+cos^2x\right)^3-3sin^2x.cos^2x\left(sin^2x+cos^2x\right)=\frac{5}{6}\left[\left(sin^2x+cos^2x\right)^2-2sin^2x.cos^2x\right]\)
\(\Leftrightarrow1-3sin^2x.cos^2x=\frac{5}{6}\left(1-2sin^2x.cos^2x\right)\)
\(\Leftrightarrow1-\frac{3}{4}sin^22x=\frac{5}{6}\left(1-\frac{1}{2}sin^22x\right)\)
\(\Leftrightarrow\frac{1}{3}sin^22x=\frac{1}{6}\)
\(\Leftrightarrow sin^22x=\frac{1}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}sin2x=\frac{\sqrt{2}}{2}\\sin2x=-\frac{\sqrt{2}}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{8}+k\pi\\x=\frac{3\pi}{8}+k\pi\\x=-\frac{\pi}{8}+k\pi\\x=\frac{5\pi}{8}+k\pi\end{matrix}\right.\)
1. Ta có: \(-1\le sinx\le1\)
\(\Rightarrow-3\le y\le3\) (hàm đã cho đồng biến trên \(\left[-\frac{\pi}{2};\frac{\pi}{2}\right]\)
\(y_{min}=-3\) khi \(sinx=-1\)
\(y_{max}=3\) khi \(sinx=1\)
2.
\(y=1-sin^2x-2sinx=2-\left(sinx+1\right)^2\)
Do \(-1\le sinx\le1\Rightarrow0\le sinx+1\le2\)
\(\Rightarrow-2\le y\le2\)
\(y_{min}=-2\) khi \(sinx=1\)
\(y_{max}=2\) khi \(sinx=-1\)
3.
\(y=1-cos^2x+cos^4x=\left(cos^2x-\frac{1}{2}\right)^2+\frac{3}{4}\)
\(\Rightarrow y\ge\frac{3}{4}\Rightarrow y_{min}=\frac{3}{4}\) khi \(cos^2x=\frac{1}{2}\)
\(y=1+cos^2x\left(cos^2x-1\right)\le1\) do \(cos^2x-1\le0\)
\(\Rightarrow y_{max}=1\) khi \(\left[{}\begin{matrix}cos^2x=1\\cos^2x=0\end{matrix}\right.\)
4.
\(y=\left(sin^2x+cos^2x\right)^2-2\left(sinx.cosx\right)^2+sinx.cosx\)
\(y=1-\frac{1}{2}sin^22x+\frac{1}{2}sin2x\)
\(y=\frac{9}{8}-\frac{1}{2}\left(sinx-\frac{1}{2}\right)^2\le\frac{9}{8}\)
\(y_{max}=\frac{9}{8}\) khi \(sinx=\frac{1}{2}\)
\(y=\frac{1}{2}\left(sinx+1\right)\left(2-sinx\right)\ge0;\forall x\)
\(\Rightarrow y_{min}=0\) khi \(sinx=-1\)
e/
Đề câu này chắc chắn đúng chứ bạn?
f/
\(sin^4x+cos^4x=\frac{3}{4}\)
\(\Leftrightarrow\left(sin^2x+cos^2x\right)^2-2sin^2x.cos^2x=\frac{3}{4}\)
\(\Leftrightarrow1-\frac{1}{2}\left(2sinx.cosx\right)^2=\frac{3}{4}\)
\(\Leftrightarrow\frac{1}{4}-\frac{1}{2}sin^22x=0\)
\(\Leftrightarrow1-2sin^22x=0\)
\(\Leftrightarrow cos4x=0\)
\(\Leftrightarrow x=\frac{\pi}{8}+\frac{k\pi}{4}\)
c/
\(y=sin\left(4x-\frac{\pi}{3}\right)+sin\left(\frac{\pi}{3}\right)+5\)
\(=sin\left(4x-\frac{\pi}{3}\right)+\frac{\sqrt{3}}{2}+5\)
Do \(-1\le sin\left(4x-\frac{\pi}{3}\right)\le1\)
\(\Rightarrow4+\frac{\sqrt{3}}{2}\le y\le6+\frac{\sqrt{3}}{2}\)
d/
\(y=\left(sin^2x+cos^2x\right)^3-3sin^2x.cos^2x\left(sin^2x+cos^2x\right)+3sin2x+5\)
\(y=6-3sin^2x.cos^2x+3sin2x\)
\(y=-\frac{3}{4}sin^22x+3sin2x+6\)
\(y=\frac{3}{4}\left(sin2x+1\right)\left(5-sin2x\right)+\frac{9}{4}\ge\frac{9}{4}\)
\(y_{min}=\frac{9}{4}\) khi \(sin2x=-1\)
\(y=\frac{3}{4}\left(sin2x-1\right)\left(3-sin2x\right)+\frac{33}{4}\le\frac{33}{4}\)
\(y_{max}=\frac{33}{4}\) khi \(sin2x=1\)
4.
\(\Leftrightarrow\left(sin^2x+cos^2x\right)^2-2sin^2x.cos^2x=cos2x\)
\(\Leftrightarrow1-\frac{1}{2}sin^22x=cos2x\)
\(\Leftrightarrow1+1-sin^22x=2cos2x\)
\(\Leftrightarrow1+cos^22x=2cos2x\)
\(\Leftrightarrow\left(cos2x-1\right)^2=0\)
\(\Leftrightarrow cos2x=1\)
\(\Leftrightarrow2x=k2\pi\)
\(\Rightarrow x=k\pi\)
3.
\(\Leftrightarrow\left(sin^2x+cos^2x\right)^2-2sin^2x.cos^2x=\frac{1}{2}\)
\(\Leftrightarrow1-\frac{1}{2}\left(2sinx.cosx\right)^2=\frac{1}{2}\)
\(\Leftrightarrow1-sin^22x=0\)
\(\Leftrightarrow cos^22x=0\)
\(\Leftrightarrow cos2x=0\)
\(\Leftrightarrow2x=\frac{\pi}{2}+k\pi\)
\(\Leftrightarrow x=\frac{\pi}{4}+\frac{k\pi}{2}\)
Câu 2 bạn coi lại đề
3.
\(1+2sinx.cosx-2cosx+\sqrt{2}sinx+2cosx\left(1-cosx\right)=0\)
\(\Leftrightarrow sin2x-\left(2cos^2x-1\right)+\sqrt{2}sinx=0\)
\(\Leftrightarrow sin2x-cos2x=-\sqrt{2}sinx\)
\(\Leftrightarrow\sqrt{2}sin\left(2x-\frac{\pi}{4}\right)=\sqrt{2}sin\left(-x\right)\)
\(\Leftrightarrow sin\left(2x-\frac{\pi}{4}\right)=sin\left(-x\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-\frac{\pi}{4}=-x+k2\pi\\2x-\frac{\pi}{4}=\pi+x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow...\)
4.
Bạn coi lại đề, xuất hiện 2 số hạng \(cos4x\) ở vế trái nên chắc là bạn ghi nhầm
5.
\(\Leftrightarrow sinx.sin2x-cosx.sin^22x=2cos^2\left(\frac{\pi}{4}-x\right)-1\)
\(\Leftrightarrow sinx.sin2x-cosx.sin^22x=cos\left(\frac{\pi}{2}-2x\right)\)
\(\Leftrightarrow sinx.sin2x-cosx.sin^22x=sin2x\)
\(\Leftrightarrow sin2x\left(sinx-cosx.sin2x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sin2x=0\Leftrightarrow x=...\\sinx-cosx.sin2x-1=0\left(1\right)\end{matrix}\right.\)
Xét (1):
\(\Leftrightarrow sinx-1-2sinx.cos^2x=0\)
\(\Leftrightarrow sinx-1-2sinx\left(1-sin^2x\right)=0\)
\(\Leftrightarrow2sin^3x-sinx-1=0\)
\(\Leftrightarrow\left(sinx-1\right)\left(2sin^2x+2sinx+1\right)=0\)
\(\Leftrightarrow...\)