Cho tam giác ABC có đường cao AH. Kẻ HE vuông góc vs BA tại E, kéo dài HE lấy EM = HE. Kẻ HF vuông vs AC tại F, kéo dài lấy NF sao cho NF = FH
a) Chứng minh: tam giác AME = AHE
b) C/M: AB là trung trực của HM và AC là trung trực của HN
c) C/M: tam giác AMN là tam giác cân, EFNM là hình thang
d) Gọi I là trung điểm của MN. C/M: AI vuông góc vs EF
a/ Ta có : AE là cạnh chung của hai tam giác vuông: tam giác AME và tam giác AHE ; ME = EM (gt)
=> tam giác AME = tam giác AHE (2 cạnh góc vuông)
b/ Dễ thấy EH = EM ; AB vuông góc MH => đpcm
Tương tự với AC .
c/ Ta chứng minh được : AB là đường trung trực của MH
=> AM = AH (1)
AC là đường trung trực của NH => AH = AN (2)
Từ (1) và (2) suy ra AM = AN => tam giác AMN cân tại A
d/ Hãy chứng minh MN // EF