Cho a + b + c = 2016.
Chứng minh rằng : (2016a+bc). (2016b+ac). (2016c+ab) = (a+b)2 . (b+c)2 . (c+a)2
~ Ai làm hộ mềnh đy ạ, mềnh tích choa :)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Làm đơn giản thế này thôi nhé An Kì :
Ta có : \(2016a+bc=\left(a+b+c\right)a+bc=a^2+ab+ac+bc=a\left(a+b\right)+c\left(a+b\right)=\left(a+b\right)\left(a+c\right)\)Tương tự : \(2016b+ac=\left(a+b\right)\left(b+c\right)\)
\(2016c+ab=\left(a+c\right)\left(b+c\right)\)
\(\Rightarrow\left(2016a+bc\right)\left(2016b+ac\right)\left(2016c+ab\right)=\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2\)
Áp dụng BĐT Cauchy-Schwarz:
$\frac{a}{a+\sqrt{2016a + bc}}=\frac{a}{a+\sqrt{(a+b+c)a + bc}} =\frac{a}{a+\sqrt{(a+b)(c+a)}} \leq \frac{a}{a+\sqrt{(\sqrt{ab}+\sqrt{ac})^{2}}}=\frac{a}{a+\sqrt{ab}+\sqrt{ac}}=\frac{\sqrt{a}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}$
$\Rightarrow \frac{a}{a+\sqrt{2016a + bc}} + \frac{b}{b+\sqrt{2016b + ca}} + \frac{c}{c+\sqrt{2016c + ab}}\leq \frac{\sqrt{a}+\sqrt{b}+\sqrt{c}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}=1$
...............................
Ap dông B§T C-S ta cã:
\(\frac{a}{a+\sqrt{2016a+bc}}=\frac{a}{a+\sqrt{\left(a+b+c\right)a+bc}}=\frac{a}{a+\sqrt{\left(a+b\right)\left(c+a\right)}}\)
\(\le\frac{a}{a+\sqrt{\left(\sqrt{ab}+\sqrt{ac}\right)^2}}=\frac{a}{a+\sqrt{ab}+\sqrt{ac}}\)
\(=\frac{\sqrt{a}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}\). Tuong tù ta cx cã:
\(\frac{b}{b+\sqrt{2016b+ca}}\le\frac{\sqrt{b}}{\sqrt{a}+\sqrt{b}+\sqrt{c}};\frac{c}{c+\sqrt{2016c+ab}}\le\frac{\sqrt{c}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}\)
Céng theo vÕ c¸c B§T trªn ta dc:
\(VT\le\frac{\sqrt{a}+\sqrt{b}+\sqrt{c}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}=1\)
P/s:may mk bi loi Unikey r` mk dg ban chua kip chinh lai bn gang doc
Đặt a/b=c/d=k
=>a=bk; c=dk
\(\dfrac{2015a-2016b}{2016c+2017d}=\dfrac{2015bk-2016b}{2016dk+2017d}=\dfrac{2015k-2016}{2016k+2017}\)
\(\dfrac{2015c-2016d}{2016a+2017b}=\dfrac{2015dk-2016d}{2016bk+2017b}=\dfrac{2015k-2016}{2016k+2017}\)
Do đó: \(\dfrac{2015a-2016b}{2016c+2017d}=\dfrac{2015c-2016d}{2016a+2017b}\)
+ Nếu a+b+c=0 => a+b=-c; a+c=-b; b+c=-a
A = (1 + a/b)(1 + b/c)(1 + c/a)
A = a+b/b . (b+c/c) . (c+a/a)
A = -c/b . (-a/c) . (-b/a)
A = -1
+ Nếu a+b+c khác 0
Áp dụng t/c của dãy tỉ số = nhau ta có:
2016c-b-a/c = 2016b-a-c/b = 2016a-b-c/a
= (2016c-b-a)+(2016b-a-c)+(2016a-b-c)/a+b+c
= 2015(a+b+c)/a+b+c = 2015
=> 2015c = 2016c-b-a; 2015b=2016b-a-c; 2015a = 2016a-b-c
=> c-b-a=0; b-a-c=0; a-b-c=0
=> c=a+b; b=a+c; a=b+c
A = a+b/b . (b+c/c) . (c+a/a)
A = c/b . a/c . b/a = 1
Từ : \(b^2=a\Rightarrow\frac{a}{b}=\frac{b}{c}\)
Hay \(\frac{a}{b}=\frac{b}{c}=\frac{2016b}{2016c}\)
Áp dụng tích chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{2016b}{2016c}=\frac{a+2016b}{a+2016c}\)
\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{a+2016b}{b+2016c}\)
\(\Rightarrow\frac{a}{b}.\frac{b}{c}=\left(\frac{a+2016b}{a+2016c}\right)^2\)
Hay \(\frac{a.b}{b.c}=\frac{\left(a+2016b\right)^2}{\left(b+2016c\right)^2}\Rightarrow\frac{a}{c}=\frac{\left(a+2016b\right)^2}{\left(b+2016c\right)^2}\)(ĐPCM)
mk nha
Ta có : \(2016a+bc=\left(a+b+c\right).a+bc=a^2+ab+ac+bc=a\left(a+b\right)+c\left(a+b\right)=\left(a+b\right)\left(a+c\right)\)
\(2016b+ac=\left(a+b+c\right).b+ac=ab+b^2+bc+ac=b\left(a+b\right)+c\left(a+b\right)=\left(a+b\right)\left(b+c\right)\)
\(2016c+ab=\left(a+b+c\right)c+ab=ac+bc+c^2+ab=a\left(b+c\right)+c\left(b+c\right)=\left(a+c\right)\left(b+c\right)\)
\(\Rightarrow\left(2016a+bc\right)\left(2016b+ac\right)\left(2016c+ab\right)=\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2\) (đpcm)