\(\dfrac{a}{a+\sqrt{2016a+bc}}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 2 2019

Áp dụng BĐT Cauchy-Schwarz:

$\frac{a}{a+\sqrt{2016a + bc}}=\frac{a}{a+\sqrt{(a+b+c)a + bc}} =\frac{a}{a+\sqrt{(a+b)(c+a)}} \leq \frac{a}{a+\sqrt{(\sqrt{ab}+\sqrt{ac})^{2}}}=\frac{a}{a+\sqrt{ab}+\sqrt{ac}}=\frac{\sqrt{a}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}$

$\Rightarrow \frac{a}{a+\sqrt{2016a + bc}} + \frac{b}{b+\sqrt{2016b + ca}} + \frac{c}{c+\sqrt{2016c + ab}}\leq \frac{\sqrt{a}+\sqrt{b}+\sqrt{c}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}=1$

...............................

5 tháng 1 2017

Ap dông B§T C-S ta cã:

\(\frac{a}{a+\sqrt{2016a+bc}}=\frac{a}{a+\sqrt{\left(a+b+c\right)a+bc}}=\frac{a}{a+\sqrt{\left(a+b\right)\left(c+a\right)}}\)

\(\le\frac{a}{a+\sqrt{\left(\sqrt{ab}+\sqrt{ac}\right)^2}}=\frac{a}{a+\sqrt{ab}+\sqrt{ac}}\)

\(=\frac{\sqrt{a}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}\). T­uong tù ta cx cã: 

\(\frac{b}{b+\sqrt{2016b+ca}}\le\frac{\sqrt{b}}{\sqrt{a}+\sqrt{b}+\sqrt{c}};\frac{c}{c+\sqrt{2016c+ab}}\le\frac{\sqrt{c}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}\)

Céng theo vÕ c¸c B§T trªn ta dc:

\(VT\le\frac{\sqrt{a}+\sqrt{b}+\sqrt{c}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}=1\)

P/s:may mk bi loi Unikey r` mk dg ban chua kip chinh lai bn gang doc 

30 tháng 5 2018

Ta có: \(\dfrac{1}{4-\sqrt{ab}}\le\dfrac{1}{4-\dfrac{\sqrt{2\left(a^2+b^2\right)}}{2}}\)

\(\left(a^2+b^2;b^2+c^2;c^2+a^2\right)\rightarrow\left(x;y;z\right)\)\(\Rightarrow\left\{{}\begin{matrix}x+y+z=6\\x;y;z>0\end{matrix}\right.\)

Làm nốt :v

3 tháng 6 2018

cho em hỏi làm tiếp ntn nữa vậy Nguyễn Huy Thắng Lightning Farron

31 tháng 3 2017

Bài 2:

\(\sqrt{\dfrac{a}{b+c}}+\sqrt{\dfrac{b}{c+a}}+\sqrt{\dfrac{c}{a+b}}>2\)

Trước hết ta chứng minh \(\sqrt{\dfrac{a}{b+c}}\ge\dfrac{2a}{a+b+c}\)

Áp dụng BĐT AM-GM ta có:

\(\sqrt{a\left(b+c\right)}\le\dfrac{a+b+c}{2}\)\(\Rightarrow1\ge\dfrac{2\sqrt{a\left(b+c\right)}}{a+b+c}\)

\(\Rightarrow\sqrt{\dfrac{a}{b+c}}\ge\dfrac{2a}{a+b+c}\). Ta lại có:

\(\sqrt{\dfrac{a}{b+c}}=\dfrac{\sqrt{a}}{\sqrt{b+c}}=\dfrac{a}{\sqrt{a\left(b+c\right)}}\ge\dfrac{2a}{a+b+c}\)

Thiết lập các BĐT tương tự:

\(\sqrt{\dfrac{b}{c+a}}\ge\dfrac{2b}{a+b+c};\sqrt{\dfrac{c}{a+b}}\ge\dfrac{2c}{a+b+c}\)

Cộng theo vế 3 BĐT trên ta có:

\(VT\ge\dfrac{2a}{a+b+c}+\dfrac{2b}{a+b+c}+\dfrac{2c}{a+b+c}=\dfrac{2\left(a+b+c\right)}{a+b+c}\ge2\)

Dấu "=" không xảy ra nên ta có ĐPCM

Lưu ý: lần sau đăng từng bài 1 thôi nhé !

31 tháng 3 2017

1) Áp dụng liên tiếp bđt \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\) với a;b là 2 số dương ta có:

\(\dfrac{1}{2a+b+c}=\dfrac{1}{\left(a+b\right)+\left(a+c\right)}\le\dfrac{\dfrac{1}{a+b}+\dfrac{1}{a+c}}{4}\)\(\le\dfrac{\dfrac{2}{a}+\dfrac{1}{b}+\dfrac{1}{c}}{16}\)

TT: \(\dfrac{1}{a+2b+c}\le\dfrac{\dfrac{2}{b}+\dfrac{1}{a}+\dfrac{1}{c}}{16}\)

\(\dfrac{1}{a+b+2c}\le\dfrac{\dfrac{2}{c}+\dfrac{1}{a}+\dfrac{1}{b}}{16}\)

Cộng vế với vế ta được:

\(\dfrac{1}{2a+b+c}+\dfrac{1}{a+2b+c}+\dfrac{1}{a+b+2c}\le\dfrac{1}{16}.\left(\dfrac{4}{a}+\dfrac{4}{b}+\dfrac{4}{c}\right)=1\left(đpcm\right)\)

30 tháng 5 2017

\(\sum\dfrac{a}{a+\sqrt{\left(a+b\right)\left(c+a\right)}}\le\sum\dfrac{a}{a+\sqrt{ab}+\sqrt{ac}}=\sum\dfrac{\sqrt{a}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}=1\)

29 tháng 5 2017

sửa lại đề đi

29 tháng 5 2017

à thiếu...a,b,c>0

giải giúp mình với @Ace Legona