K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2016

TXD X khác -m

y'=x^2 +2mx+m^2-1

nếu hs đạt CĐ tại x=2 thì y'(2)=0

<=>m^2 +4m+3=0 nên m=-1 hoặc -3

khi m=-1 thi y'=x^2+2x nên y'=0 thì x=o hoặc x=2

y''=2x+2=>y''(2)=6>0 =>m=-1 khon phải điểm cực đại

khi m=-3

khi m=-1 thi y'=x^2-6x+8 nên y'=0 thì x=4 hoặc x=2

y''=2x-6=>y''(2)=-2>0 =>m=-3 điểm cực đại tại x=2

24 tháng 8 2016

tim txd => tinh y' =>y'' => thay 2 vao y' va y''<=>y'(2)=o va y''(2)<0  => tim dc m

NV
23 tháng 5 2021

a.

\(y'=x^2+2\left(m^2-1\right)x+2m-3\)

\(y''=2x+2\left(m^2-1\right)\)

Hàm đạt cực đại tại \(x=2\) khi: \(\left\{{}\begin{matrix}y'\left(2\right)=0\\y''\left(2\right)< 0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}4+4\left(m^2-1\right)+2m-3=0\\4+2\left(m^2-1\right)< 0\end{matrix}\right.\)

Do \(2m^2+2>0\) ;\(\forall m\) nên ko tồn tại m thỏa mãn yêu cầu đề bài

b.

\(y'=x^2+2mx+3\)

\(y''=2x+2m\)

Hàm đạt cực đại tại \(x=-3\) khi: \(\left\{{}\begin{matrix}9-6m+3=0\\-6+2m< 0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m=2\\m< 3\end{matrix}\right.\)

\(\Rightarrow m=2\)

19 tháng 12 2018

a) y′ = 3 x 2  + 2(m + 3)x + m

y′ = 0 ⇔ 3 x 2  + 2(m + 3)x + m = 0

Hàm số đạt cực trị tại x = 1 thì:

y′(1) = 3 + 2(m + 3) + m = 3m + 9 = 0 ⇔ m = −3

Khi đó,

y′ = 3 x 2  – 3;

y′′ = 6x;

y′′(1) = 6 > 0;

Suy ra hàm số đạt cực tiểu tại x = 1 khi m = 3.

b) y′ = −( m 2  + 6m) x 2  − 4mx + 3

y′(−1) = − m 2  − 6m + 4m + 3 = (− m 2  − 2m – 1) + 4 = −(m + 1)2 + 4

Hàm số đạt cực trị tại x = -1 thì :

y′(−1) = − ( m + 1 ) 2  + 4 = 0 ⇔ ( m + 1 ) 2  = 4

⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

Với m = -3 ta có y’ = 9 x 2  + 12x + 3

⇒ y′′ = 18x + 12

⇒ y′′(−1) = −18 + 12 = −6 < 0

Suy ra hàm số đạt cực đại tại x = -1.

Với m = 1 ta có:

y′ = −7 x 2  − 4x + 3

⇒ y′′ = −14x − 4

⇒ y′′(−1) = 10 > 0

Suy ra hàm số đạt cực tiểu tại x = -1

Kết luận: Hàm số đã cho đạt cực đại tại x = -1 khi m = -3.

27 tháng 10 2017

Đáp án là A

23 tháng 4 2016

Tập xác định : \(D=R\backslash\left\{-m\right\}\)

Ta có : \(y=x+\frac{1}{x+m}\Rightarrow y'=1-\frac{1}{\left(x+m\right)^2}\Rightarrow y"=\frac{2}{\left(x+m\right)^3}\)

Hàm số đạt cực tiểu tại \(x=1\Leftrightarrow\begin{cases}y'\left(1\right)=0\\y"\left(1\right)>0\end{cases}\)

\(\Leftrightarrow\begin{cases}1-\frac{1}{\left(x+m\right)^2}=0\\\frac{2}{\left(x+m\right)^3}>0\end{cases}\) \(\Leftrightarrow\begin{cases}m^2+2m=0\\m>-1\end{cases}\) \(\Leftrightarrow m=0\)

Vậy m = 0 thì hàm số đạt cực tiểu tạo x = 1

11 tháng 7 2016

TXD D=R

y'=3x^2-2mx+m-2/3.

nếu hs đạt cực tiểu tại x=1 thì y'(1)=0

<=>3-2m+m-2/3=0<=>m=7/3

khi m=7/3 thì y'=3x^2-14/3x+5/3=0     y''=6x-14/3

ta có y'=0<=>x=1 hoặc x=5/9 =>y''(1)=6-14/3=4/3 >0

vậy tại m=7/3  là điểm cực tiểu tại x=1