Rút gọn biểu thức:
Help me pls, tui đang gấp lắm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x^2+2\right)^2-\left(x+2\right)\left(x-2\right)\left(x^2+4\right)\)
\(=x^4+4x^2+4-\left(x^2-4\right)\left(x^2+4\right)\)
\(=x^4+4x^2+4-x^4+16=4x^2+20=4\left(x^2+5\right)\)
\(\dfrac{2+\sqrt{2}}{\sqrt{2}+1}+\dfrac{1}{\sqrt{3}+\sqrt{2}}\)
\(=\dfrac{\sqrt{2}\left(\sqrt{2}+1\right)}{\sqrt{2}+1}+\dfrac{\sqrt{3}-\sqrt{2}}{3-2}\)
\(=\sqrt{2}+\sqrt{3}-\sqrt{2}=\sqrt{3}\)
\(\dfrac{2sin8a-sin16a}{2sin8a+sin16a}=\dfrac{2sin8a-2sin8a.cos8a}{2sin8a+2sin8a.cos8a}=\dfrac{2sin8a\left(1-cos8a\right)}{2sin8a\left(1+cos8a\right)}=\dfrac{1-cos8a}{1+cos8a}=\dfrac{1-\left(1-2sin^24a\right)}{1+\left(1-2sin^24a\right)}=\dfrac{2sin^24a}{2-2sin^24a}=\dfrac{sin^24a}{1-sin^24a}=\dfrac{sin^24a}{cot^24a}=tan^24a\)
\(=\dfrac{2sin8a-2sin8a.cos8a}{2sin8a+2sin8a.cos8a}=\dfrac{2sin8a\left(1-cos8a\right)}{2sin8a\left(1+cos8a\right)}=\dfrac{1-cos8a}{1+cos8a}\)
\(=\dfrac{1-\left(1-2sin^24a\right)}{1+\left(2cos^24a-1\right)}=\dfrac{2sin^24a}{2cos^24a}=tan^24a\)
\(A=\left\{2x-3\left(x-1\right)-5\left[x-4\left(3-2x\right)+10\right]\right\}.\left(-2x\right)\)
\(=\left\{2x-3x+3-5\left[x-12+8x+10\right]\right\}.\left(-2x\right)\)
\(=\left\{-x+3-5\left(7x-2\right)\right\}.\left(-2x\right)\)
\(=\left(-x+3-35x+10\right).\left(-2x\right)\)
\(=\left(-36x+13\right).\left(-2x\right)\)
\(=72x^2-26x\)
Bài làm:
a) \(\frac{3-\sqrt{x}}{x-9}=\frac{3-\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=-\frac{1}{\sqrt{x}+3}\left(x\ge0;x\ne9\right)\)
b) \(\frac{x-5\sqrt{x}+6}{\sqrt{x}-3}=\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}{\sqrt{x}-3}=\sqrt{x}-2\left(x\ge0;x\ne4;x\ne9\right)\)
Ta có: \(\left(x-2\right)^2.\left(y-3\right)=-4=\left(-1\right).4=\left(-4\right).1=\left(-2\right).2=2.\left(-2\right)\)
Nếu \(\left(x-2\right)^2=1\Rightarrow x-2=\pm1\Rightarrow x=\left\{3;1\right\}\)
\(y-3=-4\Rightarrow y=-1\)
Nếu \(\left(x-2\right)^2=-4\) => Ko thực hiện được (vì bình phương một số không thể bằng một số âm) (Loại)
Nếu \(\left(x-2\right)^2=2\) (loại, ko đúng)
Nếu \(\left(x-2\right)^2=-2\) ( Không thực hiện được) (Loại)
Vậy (x;y) = (3;-1) ; (1;-1)
\(A=\left(x+y+z\right)^3-\left(x+y-z\right)^3-\left(x-y+z\right)^3-\left(-x+y+z\right)^3\)
\(=\left(a+b+c\right)^3-a^3-b^3-c^3\)(\(a=-x+y+z,b=x-y+z,c=x+y-z\))
\(=\left(b+c\right)^3+3a\left(a+b+c\right)\left(b+c\right)-\left[\left(b+c\right)^3-3bc\left(b+c\right)\right]\)
\(=3\left(b+c\right)\left(a^2+ab+ac+bc\right)\)
\(=3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
\(=24xyz\)