K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 10 2019

 Ta có a2 + b2 =4 +ab

=> a2 +b2 -ab =4

=>

12 tháng 10 2019

Xin lỗi bạn mk ấn nhầm! SORRY

16 tháng 10 2020

Ta có: \(2a^2+\frac{b^2}{4}+\frac{1}{a^2}=4\Rightarrow8a^4+a^2b^2+4=16a^2\Rightarrow a^2b^2=-8a^4+16a^2-4=-8\left(a^4-2a^2+1\right)+4=-8\left(a^2-1\right)^2+4\le4\)\(\Rightarrow\left|ab\right|\le2\Rightarrow-2\le ab\le2\)

Vậy MaxS = 2023 khi ab = 2 và a2 = 1 do đó \(\left(a,b\right)\in\left\{\left(-1;-2\right);\left(1;2\right)\right\}\)

MinS = 2019 khi ab = -2 và a2 = 1 do đó \(\left(a,b\right)\in\left\{\left(-1;2\right);\left(1;-2\right)\right\}\)

8 tháng 8 2017

*) Tìm GTNN của \(A=a^2+b^2+c^2\)

Ta có :\(\left(1^2+1^2+1^2\right)\left(a^2+b^2+c^2\right)\ge\left(a.1+b.1+c.1\right)^2\)(Bunhiacopxki)

\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)

\(\Leftrightarrow a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}=\frac{25}{3}\)

*) Tìm GTLN của \(B=ac+bc+ac\)

Ta có  \(a^2+b^2+c^2\ge ab+ac+bc\)

\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ac\ge3ab+3ac+3bc\)

\(\Leftrightarrow\left(a+b+c\right)^2\ge3\left(ab+ac+bc\right)\)

\(\Rightarrow ab+bc+ac\le\frac{\left(a+b+c\right)^2}{3}=\frac{25}{3}\)

2 tháng 2 2022

Chuyên gia sao lại đi hỏi ( nghĩ chuyên gia phải cái gì cũng biết mà ??? )

2 tháng 2 2022

luc tạo nick ghi thiếu í bạn

nik đủ là chuyên đi hỏi bài

23 tháng 5 2021

,

NV
23 tháng 5 2021

Ngắn gọn thì đây là 1 bài toán không giải được (min max tồn tại, nhưng không thể tìm được)

Cực trị xảy ra tại \(x=\dfrac{a}{b}\) là nghiệm của pt bậc 4:

\(7x^4+11x^3-3x^2-4x-2=0\)

Là một pt không thể phân tích về các pt bậc thấp hơn

7 tháng 1 2016

tìm giá trị của abc nhé