Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(2a^2+\frac{b^2}{4}+\frac{1}{a^2}=4\Rightarrow8a^4+a^2b^2+4=16a^2\Rightarrow a^2b^2=-8a^4+16a^2-4=-8\left(a^4-2a^2+1\right)+4=-8\left(a^2-1\right)^2+4\le4\)\(\Rightarrow\left|ab\right|\le2\Rightarrow-2\le ab\le2\)
Vậy MaxS = 2023 khi ab = 2 và a2 = 1 do đó \(\left(a,b\right)\in\left\{\left(-1;-2\right);\left(1;2\right)\right\}\)
MinS = 2019 khi ab = -2 và a2 = 1 do đó \(\left(a,b\right)\in\left\{\left(-1;2\right);\left(1;-2\right)\right\}\)
P=abc/(2bc+c^2)+abc/(2ac+a^2)+abc/(2ab+b^2)
P=1/(2bc+c^2)+1/(2ac+a^2)+1/(2ab+b^2)
áp dụng BĐT cô-si swat ta có
P>=(1+1+1)^2/(a+b+c^2)=9/(a+b+c)^2>=9/((3 căn bậc 3 abc)^2=9/9=1
dấu = xảy ra khi a=b=c=1
a+bc/b+c + b+ca/c+a + c+ab/a+b
ta có: a+bc/c+b = a+(1-a-c).c/(1-a-c)+c = a+c-ac-c^2/1-a = (a+c)-c(a+c)/1-a = (a+c)(1-c)/1-a = (1-b)(1-c)/1-a
tương tự với các phân số còn lại:
ta đc:H=(1-b)(1-c)/1-a + (1-a)(1-c)/1-b + (1-a)(1-b)/1-c
đặt 1-a=x, 1-b=y, 1-c=z =>
yz/x + xz/y + xy/z
áp dụng bđt cô-sin =>
yz/x + xz/y >= 2 căn yz/x . xz/y=2z
tương tự => xz/y + xy/z >= 2x và xy/z + yz/x >= 2y
=> 2H >= 2(x+y+z) = 2(1-a + 1-b + 1-c)=2(3 - (a+b+c))=2(3-1)=2.2=4
=> H>= 2
=> bt trên >= 2
a+bc/b+c + b+ca/c+a + c+ab/a+b ta có: a+bc/c+b = a+(1-a-c).c/(1-a-c)+c = a+c-ac-c^2/1-a = (a+c)-c(a+c)/1-a = (a+c)(1-c)/1-a = (1-b)(1-c)/1-a tương tự với các phân số còn lại: ta đc:H=(1-b)(1-c)/1-a + (1-a)(1-c)/1-b + (1-a)(1-b)/1-c đặt 1-a=x, 1-b=y, 1-c=z => yz/x + xz/y + xy/z áp dụng bđt cô-sin => yz/x + xz/y >= 2 căn yz/x . xz/y=2z tương tự => xz/y + xy/z >= 2x và xy/z + yz/x >= 2y => 2H >= 2(x+y+z) = 2(1-a + 1-b + 1-c)=2(3 - (a+b+c))=2(3-1)=2.2=4 => H>= 2 => bt trên >= 2
Bài 1 quan trong là đoán dấu đẳng thức.
1/ Có: \(36=\left(3+2+1\right)\left(a^2+b^2+c^2\right)\ge\left(\sqrt{3}a+\sqrt{2}b+c\right)^2\)
\(\therefore\sqrt{3}a+\sqrt{2}b+c\le6\)
\(\frac{1}{3}\left(\frac{a}{bc}+\frac{3b}{2ca}\right)+\frac{3}{2}\left(\frac{b}{ca}+\frac{2c}{ab}\right)+2\left(\frac{c}{ab}+\frac{a}{3bc}\right)\)
\(\ge\frac{\sqrt{6}}{3c}+\frac{3\sqrt{2}}{a}+\frac{4\sqrt{3}}{3b}\)
\(=\frac{\left(\frac{\sqrt{6}}{3}\right)}{c}+\frac{\left(3\sqrt{6}\right)}{\sqrt{3}a}+\frac{\left(\frac{4\sqrt{6}}{3}\right)}{\sqrt{2}b}\)
\(\ge\frac{\left(\sqrt{\frac{\sqrt{6}}{3}}+\sqrt{3\sqrt{6}}+\sqrt{\frac{4\sqrt{6}}{3}}\right)^2}{\sqrt{3}a+\sqrt{2}b+c}\ge2\sqrt{6}\)
Đẳng thức xảy ra khi \(a=\sqrt{3},b=\sqrt{2},c=1\)
Chuyên gia sao lại đi hỏi ( nghĩ chuyên gia phải cái gì cũng biết mà ??? )
luc tạo nick ghi thiếu í bạn
nik đủ là chuyên đi hỏi bài