K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 7 2021

vì nó chỉ đổi vị chí cho nhau thôi

HT nha bn

Theo bài ra ta có : \(x:y=x-1\)

\(\Leftrightarrow x+y=xy=x-1\)

Với \(x+y=x-1\)ta có thể viết thành \(x+\left(-1\right)\)

=> \(y=-1\) (*)

Lại có : \(xy=x:y\Leftrightarrow xy=\frac{x}{y}\)

\(\Leftrightarrow y\left(xy\right)=x\Leftrightarrow xy^3=x\Leftrightarrow y^3=1\Leftrightarrow y=1\)(**)

Từ (*) ; (**) ta có : \(x-1=x=x-1\)không thỏa mãn 

Nhầm !

 \(y\left(xy\right)=xy^2=x\Leftrightarrow y^2=1\Leftrightarrow y=\pm1\)

Nên cx có thể suy ra đpcm 

Giả sử tồn tại các số nguyên dương x,y mà :

(x+y)(x-y)=2022 (1)

Không thể xảy ra trường hợp trong 2 số x và y có 1 số le và 1 số chẵn vì nếu xảy ra thì x+y va x-y đều là số lẻ nên tích (x+y)(x-y) là số lẻ trái với (1)

Vậy x,y phải cùng chẵn hoặc cùng lẻ . Khi đó tích x+y và x-y đều là số chẵn nên tích  (x+y)(x-y)  chia hết cho 4 mà 2022 lại không chia hết cho 4                 suy ra không tồn tại 2 số nguyên dương x và y

19 tháng 7 2021

Do x;y có vai trò tương đương nhau nên ko giảm tính tổng quát của bài toán, ta giả sử:x>= y
Suy ra: x^2<x^2+y=<x^2+x<(x+1)^2 mà x;y nguyên dương => x^2+y không phải là scp.
        Vậy không tồn tại 2 số x;y sao cho x^2+y; y^2+x

NV
22 tháng 10 2021

Đẳng thức trên sai

Đẳng thức đúng phải là:

\(x^3+y^3+z^3-3xyz\)

\(=\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\)

`a, (xy^2)/(xy+y) = (xy^2)/(y(x+1))`

`=(xy)/(x+1)`

Vậy `2` cặp phân thức bằng nhau.

`b, (xy-y)/x = (y(x-1))/x = (y^2(x-1))/(xy)`

`(xy-x)/y = (x(y-1))/y = (x^2(y-1))/(xy)`

Vậy `2` đa thức không bằng nhau

8 tháng 2 2017

x+y-xy=0

=> x-xy+y-1+1=0

=> x-xy+y-1=-1

=> (x-xy)+y-1=-1

13 tháng 11 2023

Đại lượng y là hàm số của đại lượng x. Bởi vì với mỗi giá trị của x chỉ tìm được duy nhất một giá trị tương ứng của y