Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử tồn tại ..
Ta có (-1)^x+199y luôn = 1 hoặc -1 là số lẻ => 6+ (-1)^x+199y lẻ mà 2006 chẵn => (x+199y)(x-199y) chẵn => x+199y hoặc x-199y chia hết cho 2(1)
Lại có x+199y+x-199y=2x chẵn kết hợp (1) => x+199y và x-199y đều chia hết cho 2 => (-1) ^ x+199y =1 => 6+ (-1) ^ x+199y =7
mà 2006 không chia hết cho 7 =>2006 o chia hết 6+ (-1) ^ x+199y (vô lý)
Vậy giả sử sai nên o tồn tại
\(\frac{1}{x}-\frac{1}{y}=\frac{1}{x-y}\Leftrightarrow y-x=\frac{xy}{x-y}\Leftrightarrow2xy-y^2-x^2=xy\Leftrightarrow x^2-xy+y^2=0=\left(x-\frac{y}{2}\right)^2+\frac{3y^2}{4};.\)\(>0\forall\)x,y dương=> ko tồn tại
Cách khác__giả sử \(\frac{1}{x}-\frac{1}{y}=\frac{1}{x-y}\) thì \(\frac{y-x}{xy}=\frac{1}{x-y}\) suy ra \(\left(y-x\right)\cdot\left(x-y\right)=xy\)
Xét vế trái nhận GT âm, vì tích 2 số đối nhau khác 0__vế phải nhận GT dương vì tích 2 số dương ....suy ra 2 vế ko bằng nhau
Vậy giả sử sai, x,y ko tồn tại
trong trường hợp từ 1->51 hay là những số liên tiếp thì nó sẽ nguyên cùng nhau. Trường hợp 2 thì nó sẽ không thể là các số liên tiếp thì đồng nghĩa với việc là nó sẽ là 50 số chẵn hoặc lẻ nhưng vì phải chọn 51 số nên số còn lại chắc chắn là số còn lại ( chẵn hoặc lẻ ) => đpcm
Giả sử tồn tại các số nguyên dương x,y mà :
(x+y)(x-y)=2022 (1)
Không thể xảy ra trường hợp trong 2 số x và y có 1 số le và 1 số chẵn vì nếu xảy ra thì x+y va x-y đều là số lẻ nên tích (x+y)(x-y) là số lẻ trái với (1)
Vậy x,y phải cùng chẵn hoặc cùng lẻ . Khi đó tích x+y và x-y đều là số chẵn nên tích (x+y)(x-y) chia hết cho 4 mà 2022 lại không chia hết cho 4 suy ra không tồn tại 2 số nguyên dương x và y