Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gỉa sử tồn tại hai số hữu tỉ x, y trái dấu ko đối nhau tm \(\frac{1}{x+y}=\frac{1}{x}+\frac{1}{y}\) <=> 1 / x+ y = x + y / xy <=>(x+ y )^2 = xy (1) ( nhân chéo hai vế)
Do x và y là hai số hữu tỉ trái dấu nên xy<0 mà (x+ y)^2 lớn hơn hoặc bằng 0 với mọi x và y => (x+y)^2 >xy trái với (1)
Suy ra điều giả sử ko xảy ra => ko có hai số nào tm => đpcm
\(\frac{1}{x}+\frac{1}{y}=\frac{x+y}{x.y}\)
\(\Rightarrow\frac{1}{x+y}=\frac{x+y}{x.y}\Rightarrow x.y=\left(x+y\right)^2\)
khong thoa man vi x.y la so am con (x+y)^2 la so duong
Vì x,y,z là các số nguyên dương nên ta có:
\(\frac{x}{x+y}>\frac{x}{x+y+z};\frac{y}{y+z}>\frac{y}{y+z+x};\frac{z}{z+x}>\frac{z}{z+x+y}\)
\(\Rightarrow A=\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}>\frac{x}{x+y+z}+\frac{y}{y+z+x}+\frac{z}{z+x+y}\)
mà \(\frac{x}{x+y+z}+\frac{y}{y+z+x}+\frac{z}{z+x+y}=\frac{x+y+z}{x+y+z}=1\)
=> A>1
Ta có: \(x+\frac{1}{y}=y+\frac{1}{z}\Rightarrow x-y=\frac{1}{z}-\frac{1}{y}=\frac{y-z}{yz}\)(1)
\(y+\frac{1}{z}=z+\frac{1}{x}\Rightarrow y-z=\frac{1}{x}-\frac{1}{z}=\frac{z-x}{zx}\)(2)
\(z+\frac{1}{x}=x+\frac{1}{y}\Rightarrow z-x=\frac{1}{y}-\frac{1}{x}=\frac{x-y}{xy}\)(3)
Nhân vế theo vế ba đẳng thức (1), (2), (3), ta được: \(\left(x-y\right)\left(y-z\right)\left(z-x\right)=\frac{\left(x-y\right)\left(y-z\right)\left(z-x\right)}{x^2y^2z^2}\)
\(\Rightarrow\orbr{\begin{cases}\left(x-y\right)\left(y-z\right)\left(z-x\right)=0\left(^∗\right)\\x^2y^2z^2=1\end{cases}}\)
Từ (*) ta giả sử x - y = 0 thì x = y khi đó \(\frac{1}{y}=\frac{1}{z}\Rightarrow y=z\)suy ra x = y = z. Tương tự đối với y - z = 0; z - x = 0
Vậy x = y = z hoặc x2y2z2 = 1
\(\frac{1}{x}-\frac{1}{y}=\frac{1}{x-y}\Leftrightarrow y-x=\frac{xy}{x-y}\Leftrightarrow2xy-y^2-x^2=xy\Leftrightarrow x^2-xy+y^2=0=\left(x-\frac{y}{2}\right)^2+\frac{3y^2}{4};.\)\(>0\forall\)x,y dương=> ko tồn tại
Cách khác__giả sử \(\frac{1}{x}-\frac{1}{y}=\frac{1}{x-y}\) thì \(\frac{y-x}{xy}=\frac{1}{x-y}\) suy ra \(\left(y-x\right)\cdot\left(x-y\right)=xy\)
Xét vế trái nhận GT âm, vì tích 2 số đối nhau khác 0__vế phải nhận GT dương vì tích 2 số dương ....suy ra 2 vế ko bằng nhau
Vậy giả sử sai, x,y ko tồn tại