Cho tam giác vuông OPM có cạnh OP nằm trên trục Ox. Đặt
và OM = R, .
Gọi là khối tròn xoay thu được khi quay tam giác đó xung quanh Ox (H.63).
a) Tính thể tích của theo α và R.
b) Tìm α sao cho thể tích là lớn nhất.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: OP = OM.cosα = R. cosα
Phương trình đường thẳng OM đi qua O nên có dạng: y = k.x
OM tạo với trục hoành Ox 1 góc
⇒ Hệ số góc k = tanα
⇒ OM: y = x.tanα
Vậy khối tròn xoay được tạo bởi hình phẳng giới hạn bởi đường thẳng y = x.tanα; y = 0; x = 0; x = R.cosα quay quanh trục Ox
Đáp án A.
Tam giác OPM vuông tại P suy ra O P = R . cos α ; M P = R . sin α .
Thể tích khối nón được tính bằng công thức
V = 1 3 . O P . πMP 2 = 1 3 . R . cosα . π . R 2 . sin 2 α = πR 3 3 . cosα . sin 2 α = πR 3 3 . cosα 1 - cos 2 α
V đạt giá trị lớn nhất khi - cos 3 α + cos α đạt giá trị lớn nhất.
Sử dụng TABLE ta có
Ta thấy hàm số đạt giá trị lớn nhất là 0 , 384 = 2 3 9 . Suy ra V = 2 3 πR 3 27 .
a) Hoành độ điểm P là :
xp = OP = OM. cos α = R.cosα
Phương trình đường thẳng OM là y = tanα.x. Thể tích V của khối tròn xoay là:
b) Đặt t = cosα => t ∈ . (vì α ∈ ), α = arccos t.
Ta có :
V' = 0 ⇔
hoặc (loại).
Ta có bảng biến thiên:
Từ đó suy ra V(t) lớn nhất ⇔ , khi đó : .