K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 3 2016

a) Hoành độ điểm P là : 

xp =  OP = OM. cos α = R.cosα

Phương trình đường thẳng OM là y =  tanα.x. Thể tích V của khối tròn xoay là:

b) Đặt t = cosα  =>  t ∈ . (vì α ∈ ),  α = arccos t.

Ta có :

V' = 0 ⇔

    hoặc  (loại).

 

Ta có bảng biến thiên:

Từ đó suy ra V(t) lớn nhất ⇔  , khi đó : .

 

25 tháng 9 2019

Đáp án A.

27 tháng 4 2017

Đáp án A.

Tam giác OPM vuông tại P suy ra O P = R . cos α ; M P = R . sin α .

Thể tích khối nón được tính bằng công thức

V = 1 3 . O P . πMP 2 = 1 3 . R . cosα . π . R 2 . sin 2 α = πR 3 3 . cosα . sin 2 α = πR 3 3 . cosα 1 - cos 2 α

V đạt giá trị lớn nhất khi - cos 3 α + cos α  đạt giá trị lớn nhất.

Sử dụng TABLE ta có

Ta thấy hàm số đạt giá trị lớn nhất là 0 , 384 = 2 3 9 . Suy ra V = 2 3 πR 3 27 .

30 tháng 3 2017

1 tháng 1 2018

Đáp án B

20 tháng 9 2019

Đáp án C

Phương pháp:

- Tính thể tích khối nón có được khi quay tam giác ACH quanh AB (hay AH) bằng công thức V = 1 3 S d . h  với đáy là hình tròn tâm H bán kính CH và chiều cao là AH.

- Tìm GTLN của thể tích dựa vào phương pháp xét hàm, từ đó tìm được AH.

Cách giải: Thể tích khối nón khi quay Δ A C H quay quanh AB:

V = 1 3 A H . π . C H 2 = 1 3 A H . π . A H . A B − A H 2 = 2 R π 3 . A H 2 − π 3 A H 3

Chú ý khi giải:

Ở bước kết luận nhiều HS sẽ kết luận sai góc α là góc 45 ° dẫn đến chọn sai đáp án. 

24 tháng 4 2019

Đáp án B.

Quay tam giác AHC quanh trục AB thu được hình nón có h = AH; r = CH.

6 tháng 12 2017

 

Chọn C.

Phương pháp:

Dựng hình, xác định các hình tròn xoay tạo thành khi quay và tính tỉ số thể tích.

Cách giải:

 

3 tháng 11 2017

19 tháng 12 2019

Đáp án đúng : A

20 tháng 7 2019