K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 4 2017

Đáp án A.

Tam giác OPM vuông tại P suy ra O P = R . cos α ; M P = R . sin α .

Thể tích khối nón được tính bằng công thức

V = 1 3 . O P . πMP 2 = 1 3 . R . cosα . π . R 2 . sin 2 α = πR 3 3 . cosα . sin 2 α = πR 3 3 . cosα 1 - cos 2 α

V đạt giá trị lớn nhất khi - cos 3 α + cos α  đạt giá trị lớn nhất.

Sử dụng TABLE ta có

Ta thấy hàm số đạt giá trị lớn nhất là 0 , 384 = 2 3 9 . Suy ra V = 2 3 πR 3 27 .

11 tháng 12 2018

Chọn đáp án B.

5 tháng 4 2019

Đáp án B

Ta có  V = π ∫ 0 π − sin x 2 d x = π ∫ 0 π sin 2 x d x

27 tháng 9 2017

Đáp án D.

Ta có

x 2 + y − a 2 = R 2 ⇔ y = a ± R 2 − x 2  

Nửa trên hình tròn có phương trình là y = a + R 2 − x 2  

Nửa dưới hình tròn có phương trình là  y = a − R 2 − x 2  

Thể tích của hình xuyến là

V = V 1 − V 2 = π ∫ − R R a + R 2 − x 2 2 d x − π ∫ − R R a − R 2 − x 2 2 d x = 4 π a ∫ − R R R 2 − x 2 d x

 

Đặt   x = R sin t ⇒ d x = R costdt x = − R ⇒ t = − π 2 ;   x = R = t = π 2

⇒ V = 4 π a ∫ − π 2 π 2 R 2 − R 2 sin 2 t . R cos t d t = 4 π a R 2 ∫ − π 2 π 2 cos 2 t d t = 2 π 2 a R 2  

29 tháng 7 2018

Đáp án D.

Khối nón cụt có thể tích là V = πh 3 R 2 + R . r + r 2  mà h = 3 V = π ⇒ R 2 + R . r + r 2 = 1      (*).

Ta có P = R + 2 r ⇔ R = P - 2 r  thay vào (*), ta được P - 2 r 2 + P - 2 r r + r 2 = 1  

⇔ P 2 - 4 P r + 4 r 2 + P r - 2 r 2 + r 2 - 1 = 0 ⇔ 3 r 2 - 3 P r + P 2 - 1 = 0    (I).

Vậy phương trình (I) có nghiệm khi và chỉ khi ∆ I = - 3 P 2 - 4 . 3 . P 2 - 1 ≥ 0 ⇔ P ≤ 2 .  

Vậy giá trị lớn nhất của P là 2.

30 tháng 7 2018

Đáp án B.

Đặt a = B C , b = C A , c = A B .

Quay tam giác OCA quanh trung trực của đoạn thẳng CA thì khối tròn xoay sinh ra là khối nón có chiều cao h 1 = R 2 − 1 4 b 2  và bán kính đáy r 1 = 1 2 b  nên ta có V 1 = 1 3 π r 1 2 h 1 = 1 24 π b 2 4 R 2 − b 2 .

Tương tự, ta có

V 2 = 1 24 π c 2 4 R 2 − c 2 ; V 3 = 1 24 π a 2 4 R 2 − a 2 .

Bằng việc khảo sát hàm số f t = t 2 4 R 2 − t  trên khoảng 0 ; 4 R 2 hoặc dựa vào bất đẳng thức Cô-si

1 2 b 2 . 1 2 b 2 . 4 R 2 − b 2 ≤ 1 2 b 2 + 1 2 b 2 + 4 R 2 − b 2 3 3 = 64 27 R 6 .

 

Ta được V 1 ≤ 2 π 3 9 R 3 ; V 2 ≤ 2 π 3 9 R 3 . Suy ra V 1 + V 2 ≤ 4 π 3 9 R 3 .

Dấu bằng xảy ra khi và chỉ khi b = c = 2 6 3 R .

Vậy V 1 + V 2  đạt giá trị lớn nhất bằng 4 π 3 9 R 3  khi b = c = 2 6 3 R .

Khi đó tam giác ABC cân tại A và có A B = A C = 2 6 3 R .

Gọi AH là đường cao của tam giác ABC thì 2 R . A H = A B 2 . Từ đó suy ra A H = A B 2 2 R = 4 3 R . Do đó O H = A H − R = 1 3 R  và a = 2 R 2 − O H 2 = 4 2 3 R .

Suy ra V 3 = 8 π 81 R 3 .

9 tháng 8 2018

Đáp án B.

4 tháng 4 2018

Đáp án A

27 tháng 2 2018

Chọn B

Nếu S(x) là diện tích thiết diện của vật thể bị cắt bởi mặt phẳng vuông góc với trục Ox thì thể tích của vật thể giới hạn bửi hai mặt phẳng x = a và x = b là