K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 2 2016

A=1+4+42+43+...+499

=>4A=4+42+43+44+...+4100

=>4A-A=(4+42+43+44+...+4100)-(1+4+42+43+...+499)

=>3A=4100-1 

=>A=\(\frac{4^{100}-1}{3}\) < 4100

=>A<B

 

14 tháng 2 2016

     \(A=1+4+4^2+4^3+...+4^{99}\)

=> \(4A=4+4^2+4^3+4^4+...+4^{100}\)

=> \(4A-A=\left(4+4^2+4^3+...+4^{100}\right)-\left(1+4+4^2+...+4^{99}\right)\)

=> \(3A=4^{100}-1\)

=> \(A=\frac{4^{100}-1}{3}\)

Ta có : \(B=4^{100}\)   =>  \(\frac{B}{3}=\frac{4^{100}}{3}\)

Vì    \(4^{100}-1<4^{100}\)     =>   \(\frac{4^{100}-1}{3}<\frac{4^{100}}{3}\)    =>  \(A<\frac{B}{3}\)   (đpcm)

\(A=1+4+4^2+4^3+4^4+4^5+...+4^{2019}+4^{2020}+4^{2021}\)

\(=\left(1+4+4^2\right)+\left(4^3+4^4+4^5\right)+...+\left(4^{2019}+4^{2020}+4^{2021}\right)\)

\(=21+4^3\cdot21+...+4^{2019}\cdot21\)

\(=21\left(1+4^3+...+4^{2019}\right)⋮21\)

1 tháng 11 2023

\(A=1+4+4^2+4^3+...+4^{2021}\\=(1+4+4^2)+(4^3+4^4+4^5)+(4^6+4^7+4^8)+...+(4^{2019}+4^{2020}+4^{2021})\\=21+4^3\cdot(1+4+4^2)+4^6\cdot(1+4+4^2)+...+4^{2019}\cdot(1+4+4^2)\\=21+4^3\cdot21+4^6\cdot21+...+4^{2019}\cdot21\\=21\cdot(1+4^3+4^6+...+4^{2019})\)

Vì \(21\cdot(1+4^3+4^6+...+4^{2019})\vdots21\)

nên \(A\vdots21\)

\(\text{#}Toru\)

11 tháng 11 2021

\(A=\left(1+4+4^2\right)+...+4^{57}\left(1+4+4^2\right)\)

\(=21\left(1+...+4^{57}\right)⋮7\)

11 tháng 11 2021

cứ tổng của 3 số liên tiếp được 1 số chia hết cho 7
=> (1+4+4^2)+(4^3+4^4+4^5)+.....+(4^57+4^58+4^59)(20 cặp số)
=> 21+ 4^3(1+4+4^2)+...+4^57(1+4+4^2)
......
Vì 21 chia hết cho 7=> 21.(........) chia hết cho 7=> A chia hết cho 7
đpcm

20 tháng 10 2021

\(\Rightarrow4A=4+4^2+4^3+...+4^{100}\\ \Rightarrow4A-A=\left(4+4^2+4^3+...+4^{100}\right)-\left(1+4+4^2+...+4^{99}\right)\\ \Rightarrow3A=4^{100}-1< 4^{100}=B\\ \Rightarrow A< \dfrac{B}{3}\)

10 tháng 7 2021

Ta có: `A = 1 + 4 + 4^2 + 4^3 + 4^4 + 4^5 + 4^6 + 4^7 + 4^8`

`= (1 + 4 + 4^2) + (4^3 + 4^4 + 4^5) + (4^6 + 4^7 + 4^8)`

`= 21 + 4^3 (1 + 4 + 4^2) + 4^6 (1 + 4 + 4^2)`

`= 21 + 4^3 . 21 + 4^6 . 21`

`= 21 (1 + 4^3 + 4^6)`

Vì \(21\left(1+4^3+4^6\right)⋮3\) nên \(A⋮3\)

17 tháng 12 2023

CM: A ⋮ 5

A = 1 + 4 + 42 + 43 + ... + 460

A = (1 + 4) + (42 + 43) + ... + (459 + 460)

A = 5 + 42 . (1 + 4) + ... + 459 . (1 + 4)

A = 5 + 42 . 5 + ... + 459 . 5

A = 5 . (1 + 42 + ... + 459)  ⋮ 5

Vậy A ⋮ 5

CM: A ⋮ 21

A = 1 + 4 + 42 + 43 + ... + 460

A = (1 + 4 + 42) + (43 + 44 + 45) + ... + (458 + 459 + 460)

A = 21 + 43 . (1 + 4 + 42) + ... + 458 . (1 + 4 + 42)

A = 21 + 43 . 21 + ... + 458 . 21

A = 21 . (1 + 43 + ... + 458)  ⋮ 21

Vậy A ⋮ 21

4 tháng 8 2017

4124 tk mk nha

4 tháng 8 2017
((42 x 43) + (43 x 57) - 43) - (360 : 4) =   4124
7 tháng 1

viết dấu + cho nhanh, bạn!

7 tháng 1

A = 1 + 4 + 42 + 43 + ... + 42021

A = 40 + 41 + 42 + 43 +...+ 42021

Xét dãy số 0; 1; 2; 3;...; 2021

Dãy số trên có số số hạng là:

(2021 - 0) : 1 + 1 = 2022

Vậy A có 2022 số hạng

vì 2022 : 3 = 674

Vậy ta nhóm 3 số hạng liên tiếp của A thành một nhóm thì khi đó

A = (1 + 4 + 42) + (43 + 44 + 45) +...+ (42019 + 42020 + 42021)

A = (1 + 4 + 16) + 43.(1 + 4 + 42) + ... +42019.(1 + 4 + 42)

A = 21 + 43.21 +... + 42019.21

A = 21.(1 + 43 + ... + 42019

21 ⋮ 21 ⇒ 21.(1 + 43 + ...+ 42019) ⋮ 21 ⇒ A ⋮ 21 (đpcm)

26 tháng 1 2022

tk

undefined

26 tháng 1 2022

\(A=4+4^2+4^3+...+4^{81}=4\left(1+4+4^2\right)+...+4^{79}\left(1+4+4^2\right)\)

\(=21\left(4+...+4^{79}\right)⋮21\)vậy ta có đpcm 

\(\left(42\cdot43+43\cdot57+43\right)-360:4\)

\(=43\cdot\left(42+57+1\right)-90\)

\(=42\cdot100-90\)

=4110