K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2015

a)Ta có:A:B=\(\left(\frac{1}{4}.\frac{3}{6}.\frac{5}{8}....\frac{43}{46}.\frac{45}{48}\right):\left(\frac{2}{5}.\frac{4}{7}.\frac{6}{9}....\frac{44}{47}.\frac{46}{49}\right)=\frac{\left(1.3.5...45\right).\left(2.4.6...46\right)}{\left(4.6.8...48\right)\left(5.7.9...49\right)}=\frac{3.2}{47.48.49}

5 tháng 3 2019

A:B thì phải nhân nghịch đảo chứ ?

26 tháng 2 2017

lại ăn gian tiếp

12 tháng 2 2017

Giúp mk điPeter Jin

12 tháng 4 2018

Ta có : 

\(\frac{x+1}{49}+\frac{x+2}{48}+\frac{x+3}{47}+\frac{x+4}{46}+\frac{x+5}{45}=-5\)

\(\Leftrightarrow\)\(\left(\frac{x+1}{49}+1\right)+\left(\frac{x+2}{48}+1\right)+\left(\frac{x+3}{47}+1\right)+\left(\frac{x+4}{46}+1\right)+\left(\frac{x+5}{45}+1\right)=-5+5\)

\(\Leftrightarrow\)\(\frac{x+50}{49}+\frac{x+50}{48}+\frac{x+50}{47}+\frac{x+50}{46}+\frac{x+50}{45}=0\)

\(\Leftrightarrow\)\(\left(x+50\right)\left(\frac{1}{49}+\frac{1}{48}+\frac{1}{47}+\frac{1}{46}+\frac{1}{45}\right)=0\)

Vì \(\frac{1}{49}+\frac{1}{48}+\frac{1}{47}+\frac{1}{46}+\frac{1}{45}\ne0\)

Nên \(x+50=0\)

\(\Rightarrow\)\(x=-50\)

Vậy \(x=-50\)

Chúc bạn học tốt ~ 

13 tháng 3 2018

=1−12 +13 −14 +15 −16 +...+149 −150. A =(1+13 +15 +...+149 )−(12 +14 +16 +...+150 ).

A =(1+12 +13 +14 +15 +16 +...+149 ...

.........

25 tháng 2 2018

\(A=\frac{1}{2^2}.\left(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)\)

TA có :\(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};...;\frac{1}{50^2}< \frac{1}{49.50}\)

=>\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)

=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}=1-\frac{1}{50}\)

=>\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< 1\Rightarrow1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< 1+1=2\)

\(A=\frac{1}{2^2}.\left(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)< \frac{1}{2^2}.2=\frac{1}{2}\left(đpcm\right)\)