Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
7/12 = 4/12 + 3/12 = 1/3 + 1/4 = 20/60 + 20/80
và 1/41 + 1/42 + 1/43 +...+ 1/79 + 1/80 = (1/41 + 1/42 + 1/43 + ...+ 1/60) + (1/61 + 1/62 +...+ 1/79 + 1/80)
Do 1/41> 1/42 > 1/43 > ...>1/59 > 1/60
=> (1/41 + 1/42 + 1/43 + ...+ 1/60) > 1/60 + ...+ 1/60 = 20/60
và 1/61> 1/62> ... >1/79> 1/80
=> (1/61 + 1/62 +...+ 1/79 + 1/80) > 1/80 + ...+ 1/80 = 20/80
Vậy 1/41 + 1/42 + 1/43 +...+ 1/79 + 1/80 > 20/60 + 20/80 = 7/12
Gọi \(B=\frac{1}{41}+\frac{1}{42}+\frac{1}{43}+...+\frac{1}{60}\)
\(C=\frac{1}{61}+\frac{1}{62}+\frac{1}{63}+...+\frac{1}{80}\)
Ta có : \(B=\frac{1}{41}+\frac{1}{42}+\frac{1}{43}+...+\frac{1}{60}>\frac{1}{60}.20=\frac{2}{3}\)
\(C=\frac{1}{61}+\frac{1}{62}+\frac{1}{63}+...+\frac{1}{80}>\frac{1}{80}.20=\frac{1}{4}\)
\(\Leftrightarrow\frac{1}{41}+\frac{1}{42}+\frac{1}{43}+...+\frac{1}{80}>\frac{2}{3}+\frac{1}{4}=\frac{11}{12}\)
Mà \(\frac{11}{12}>\frac{7}{12}\Rightarrow\frac{1}{41}+\frac{1}{42}+\frac{1}{43}+...+\frac{1}{80}>\frac{7}{12}\)
A =\(\frac{2\left(1-\frac{1}{19}+\frac{1}{43}-\frac{1}{1943}\right)}{3\left(1-\frac{1}{19}+\frac{1}{43}-\frac{1}{1943}\right)}:\frac{4\left(1-\frac{1}{29}+\frac{1}{41}-\frac{1}{2941}\right)}{5\left(1-\frac{1}{29}+\frac{1}{41}-\frac{1}{2941}\right)}\)
=\(\frac{2}{3}:\frac{4}{5}=\frac{2}{3}.\frac{5}{4}=\frac{10}{12}=\frac{5}{6}\)
\(\frac{30}{43}\)=\(\frac{1}{\frac{43}{30}}\)= \(\frac{1}{1+\frac{13}{30}}\)=\(\frac{1}{1+\frac{1}{2+\frac{4}{13}}}\)=\(\frac{1}{1+\frac{1}{2+\frac{1}{3+\frac{1}{4}}}}\)
=> a=1,b=2,c=3,d=4.
Suy nghĩ đi, chỗ nào ko hiểu hỏi mình, lát mình quay lại giờ mình bận.
\(\frac{30}{43}=\frac{1}{\frac{43}{30}}=\frac{1}{1+\frac{13}{30}}=\frac{1}{1+\frac{1}{\frac{30}{13}}}=\frac{1}{1+\frac{1}{2+\frac{4}{13}}}=\frac{1}{1+\frac{1}{2+\frac{1}{\frac{13}{4}}}}=\frac{1}{1+\frac{1}{2+\frac{1}{3+\frac{1}{4}}}}\)
=> a = 1; b = 2; c = 3; d = 4.
Từ GT => a=1-b. Thay vòa biểu thức cần chứng minh ta được:
\(a^3+b^3=3b^2-3b+1=3\left(b^2-b+\frac{1}{4}\right)+1-\frac{3}{4}=3\left(b-\frac{1}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)
a) \(\frac{1}{n}\) - \(\frac{1}{n+1}\) = \(\frac{n+1}{n\left(n+1\right)}\) - \(\frac{n}{n\left(n+1\right)}\) = \(\frac{1}{n\left(n+1\right)}\) = \(\frac{1}{n}\) . \(\frac{1}{n+1}\) =>đpcm
b) A= \(\frac{1}{2}\) - \(\frac{1}{3}\) + \(\frac{1}{3}\) - \(\frac{1}{4}\)+...+\(\frac{1}{8}\) - \(\frac{1}{9}\) +\(\frac{1}{9}\)
= \(\frac{1}{2}\) + \(\frac{1}{9}\)= \(\frac{11}{18}\)
A=1+4+42+43+...+499
=>4A=4+42+43+44+...+4100
=>4A-A=(4+42+43+44+...+4100)-(1+4+42+43+...+499)
=>3A=4100-1
=>A=\(\frac{4^{100}-1}{3}\) < 4100
=>A<B
\(A=1+4+4^2+4^3+...+4^{99}\)
=> \(4A=4+4^2+4^3+4^4+...+4^{100}\)
=> \(4A-A=\left(4+4^2+4^3+...+4^{100}\right)-\left(1+4+4^2+...+4^{99}\right)\)
=> \(3A=4^{100}-1\)
=> \(A=\frac{4^{100}-1}{3}\)
Ta có : \(B=4^{100}\) => \(\frac{B}{3}=\frac{4^{100}}{3}\)
Vì \(4^{100}-1<4^{100}\) => \(\frac{4^{100}-1}{3}<\frac{4^{100}}{3}\) => \(A<\frac{B}{3}\) (đpcm)