cho tam giác ABC cân tại C, AB =\(\sqrt{3}\),dường cao CH =\(\sqrt{2}\) .M là trung điểm HB.O là trọng tâm ABC.
CM cắt AO tại K
cm KH là phân giác AKM
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét tam giác ABI và tam giác ACI có :
cạnh AI chung
góc IAB = góc IAC ( vì AI là phân giác góc A )
AB = AC ( tam giác ABC cân tại A )
Do đó : tam giác ABI = tam giác ACI ( c.g.c )
=> góc AIB = góc AIC ( hai góc tương ứng )
mà góc AIB và góc AIC là hai góc kề bù
=> góc AIB = góc AIC = \(\frac{180^0}{2}\)= 90độ
Vậy AI vuông góc với BC
b,Theo câu a : tam giác ABI = tam giác ACI
=> BI = CI ( cạnh tương ứng )
=> AI là đường trung tuyến của BC
Vì D là trung điểm của AC nên BD là đường trung tuyến của AC
mà BD và AI cắt nhau tại M
Vậy M là trọng tâm của tam giác ABC
c, Vì I là trung điểm của BC nên
BI = CI = \(\frac{BC}{2}=\frac{6}{2}\)= 3cm
Áp dụng định lý Py-ta-go vào tam giác vuông ABI có :
\(AI^2=AB^2-BI^2\)
\(\Rightarrow AI^2=5^2-3^2\)
\(\Rightarrow AI^2=16\)
\(\Rightarrow AI=4cm\)
Vì M là trọng tâm của tam giác ABC nên :
\(AM=\frac{2}{3}AI\)
\(\Rightarrow AM=\frac{2}{3}.4\approx2,7cm\)
Vậy AM \(\approx\)2,7cm .
Học tốt
a; Xét ΔABC có
H là trung điểm của BC
HK//AB
Do đó: K là trung điểm của AC
Xét ΔABC có
AH là đường trung tuyến
BK là đường trung tuyến
AH cắt BK tại G
Do đó: G là trọng tâm của ΔABC
b: Xét ΔABC có
G là trọng tâm
CI là đường trung tuyến
Do đó: C,I,G thẳng hàng
c: Xét tứ giác AIHK có
HK//AI
HK=AI
Do đó: AIHK là hình bình hành
mà AI=AK
nên AIHK là hình thoi
=>KI là đường trung trực của AH
mình cũng hk pt làm mak thầy cho,neu pn co cau tra loi nho cho minh pt nha
a: Xét (O) có
ΔABD nội tiếp
AD là đường kính
Do đó: ΔABD vuông tại B
=>BD//CH
Xét (O) có
ΔACD nội tiếp
AD là đường kính
Do đó: ΔACD vuông tại C
=>CD//BH
Xét tứ giác BHCD có
BH//CD
BD//CH
Do đó: BHCD là hình bình hành
b: BHCD là hình bình hành
nên BC cắt HD tại trung điểm của mỗi đường
=>I là trung điểm của HD
Xét ΔDAH có DI/DH=DO/DA
nen Io//AH và IO=AH/2
=>AH=2OI
c: G là trọng tâm
nên AG=2AI
Xét ΔAHD có
AI là trung tuyến
AG=2/3AI
DO đó: G là trọng tâm
Xin lỗi em, lúc nãy thầy vẽ sai hình nên cho rằng em post sai đề. Đề hoàn toàn đúng và cách giải như sau;
Gọi N là trung điểm BC thì A,O,K,N thẳng hàng (do O là trọng tâm). Ta có NM là đường trung bình nên \(MN\parallel AH\to MN=\frac{1}{2}CH=\frac{3}{4}CO\to\frac{NK}{KO}=\frac{3}{4}\to KO=\frac{4}{7}ON=\frac{2}{7}AO\to AK=\frac{9}{7}AO.\).
Theo định lý Pi-ta-to \(AO^2=AH^2+OH^2=\left(\frac{\sqrt{3}}{2}\right)^2+\left(\frac{\sqrt{2}}{3}\right)^2=\frac{3}{4}+\frac{2}{9}=\frac{35}{36}\to AO=\frac{\sqrt{35}}{6}\to AK=\frac{3\sqrt{35}}{14}\) (1)
Mặt khác \(\frac{KM}{KC}=\frac{MN}{CO}=\frac{3}{4}\to KM=\frac{3}{7}CM.\) Mà \(CM^2=CH^2+HM^2=2+\left(\frac{\sqrt{3}}{4}\right)^2=2+\frac{3}{16}=\frac{35}{16}\to CM=\frac{\sqrt{35}}{4}\to KM=\frac{3\sqrt{35}}{28}\) (2)
Từ (1),(2) trên suy ra \(\frac{KM}{AK}=\frac{1}{2}=\frac{HM}{HB}=\frac{HM}{HA}\to\) \(KH\) là phân giác của góc \(AKM.\)