K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
22 tháng 7 2021

\(\Leftrightarrow x^2\left(x^2+4\right)-\left(x^2+4\right)=0\)

\(\Leftrightarrow\left(x^2+4\right)\left(x^2-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-1=0\\x^2+4=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2=1\\x^2=-4\left(vn\right)\end{matrix}\right.\)

\(\Leftrightarrow x=\pm1\)

8 tháng 8 2023

a/

\(x^3-4x^2-\left(x-4\right)=0\)

\(\Leftrightarrow x^2\left(x-4\right)-\left(x-4\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(x^2-1\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\x-1=0\\x+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=1\\x=-1\end{matrix}\right.\)

b/

\(x^5-9x=0\)

\(\Leftrightarrow x\left(x^4-9\right)=x\left(x^2-3\right)\left(x^2+3\right)=0\)

\(\Leftrightarrow x\left(x-\sqrt{3}\right)\left(x+\sqrt{3}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\sqrt{3}\\x=-\sqrt{3}\end{matrix}\right.\)

c/

\(\left(x^3-x^2\right)^2-4x^2+8x-4=0\)

\(\Leftrightarrow x^4\left(x-1\right)^2-4\left(x-1\right)^2=0\)

\(\Leftrightarrow\left(x-1\right)^2\left(x^4-4\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2\left(x^2-2\right)\left(x^2+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x^2-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\pm\sqrt{2}\end{matrix}\right.\)

8 tháng 8 2023

Sos

 

3 tháng 12 2023

$(x^2-2)^2+4(x-1)^2-4(x^2-2)(x-1)=0$

$\Leftrightarrow(x^2-2)^2-4(x^2-2)(x-1)+4(x-1)^2=0$

$\Leftrightarrow(x^2-2)^2-2\cdot(x^2-2)\cdot2(x-1)+[2(x-1)]^2=0$

$\Leftrightarrow[(x^2-2)-2(x-1)]^2=0$

$\Leftrightarrow(x^2-2-2x+2)^2=0$

$\Leftrightarrow(x^2-2x)^2=0$

$\Leftrightarrow x^2-2x=0$

$\Leftrightarrow x(x-2)=0$

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)

Vậy: $x\in\{0;2\}$.

16 tháng 11 2021

a: \(x\in\left\{0;25\right\}\)

c: \(x\in\left\{0;5\right\}\)

a: \(8x\left(x-2017\right)-2x+4034=0\)

\(\Leftrightarrow\left(x-2017\right)\left(8x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2017\\x=\dfrac{1}{4}\end{matrix}\right.\)

13 tháng 9 2020

a) x(x - 2) + (x - 2) = 0

=> (x + 1)(x - 2) = 0

=> \(\orbr{\begin{cases}x+1=0\\x-2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-1\\x=2\end{cases}}\)

Vậy \(x\in\left\{-1;2\right\}\)

b) \(\frac{2}{3}x\left(x^2-4\right)=0\)

=> x(x2 - 4) = 0

=> \(\orbr{\begin{cases}x=0\\x^2-4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x^2=2^2\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=\pm2\end{cases}}\)

g) (x + 2)2 - x + 4 = 0

=> x2 + 4x + 4 - x + 4 = 0

=> x2 + 3x + 8 = 0

=> (x2 + 3x + 9/4) + 23/4 = 0

=> (x + 3/2)2 + 23/4 \(\ge\frac{23}{4}>0\)

=> Phương trình vô nghiệm

h) (x + 2)2 = (2x - 1)2 

=> (x + 2)2 - (2x - 1)2 = 0

=> (x + 2 - 2x + 1)(x + 2 + 2x - 1) = 0

=> (-x + 3)(3x + 1) = 0

=> \(\orbr{\begin{cases}-x+3=0\\3x+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=-\frac{1}{3}\end{cases}}\)

=> \(x\in\left\{3;-\frac{1}{3}\right\}\)

13 tháng 9 2020

a) x( x - 2 ) + x - 2 = 0

⇔ x( x - 2 ) + 1( x - 2 ) = 0

⇔ ( x - 2 )( x + 1 ) = 0

⇔ \(\orbr{\begin{cases}x-2=0\\x+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=-1\end{cases}}\)

b) 2/3x( x2 - 4 ) = 0

⇔ \(\orbr{\begin{cases}\frac{2}{3}x=0\\x^2-4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm2\end{cases}}\)

g) ( x + 2 )2 - x + 4 = 0

⇔ x2 + 4x + 4 - x + 4 = 0

⇔ x2 + 3x + 8 = 0 (*)

Ta có : x2 + 3x + 8 = ( x2 + 3x + 9/4 ) + 23/4 = ( x + 3/2 )2 + 23/4 ≥ 23/4 > 0 ∀ x

=> (*) không xảy ra 

=> Pt vô nghiệm

h) ( x + 2 )2 = ( 2x - 1 )2

⇔ ( x + 2 )2 - ( 2x - 1 )2 = 0

⇔ [ ( x + 2 ) - ( 2x - 1 ) ][ ( x + 2 ) + ( 2x - 1 ) ] = 0

⇔ ( x + 2 - 2x + 1 )( x + 2 + 2x - 1 ) = 0

⇔ ( 3 - x )( 3x + 1 ) = 0

⇔ \(\orbr{\begin{cases}3-x=0\\3x+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-\frac{1}{3}\end{cases}}\)

15 tháng 5 2017

8 tháng 6 2018

/ x / là giá trị tuyệt đối ak bạn

8 tháng 6 2018

đúng r đó


 

25 tháng 9 2023

`(x+2)(x^2 -2x+4) -x(x^2-2)=15`

`<=> x^3 +8 - x^3 + 2x-15=0`

`<=> 2x-7=0`

`<=> 2x=7`

`<=>x=7/2`

__

`(x-4)^2 -(x-2)(x+2)=6`

`<=>x^2 - 8x+16- x^2 +4-6=0`

`<=> -8x+14=0`

`<=> -8x=-14`

`<=>x=14/8= 7/4`

__

`x^4 -2x^3 +x^2-2x=0`

`<=>x(x^3-2x^2+x-2)=0`

`<=> x(x^3+x-2x^2-2)=0`

`<=>x(x(x^2+1) -2(x^2+1))=0`

`<=> x(x^2+1)(x-2)=0`

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2+1=0\\x-2=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)

25 tháng 9 2023

a) \(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x^2-2\right)=15\)

\(\Leftrightarrow\left(x^3+2^3\right)-\left(x^3-2x\right)=15\)

\(\Leftrightarrow x^3+8-x^3+2x=15\)

\(\Leftrightarrow2x+8=15\) 

\(\Leftrightarrow2x=15-8\)

\(\Leftrightarrow2x=7\)

\(\Leftrightarrow x=\dfrac{7}{2}\)

b) \(\left(x-4\right)^2-\left(x+2\right)\left(x-2\right)=6\)

\(\Leftrightarrow x^2-8x+16-\left(x^2-4\right)=6\)

\(\Leftrightarrow x^2-8x+16-x^2+4=6\)

\(\Leftrightarrow-8x+20=6\)

\(\Leftrightarrow-8x=6-20\)

\(\Leftrightarrow-8x=-14\)

\(\Leftrightarrow x=\dfrac{7}{4}\) 

c) \(x^4-2x^3+x^2-2x=0\)

\(\Leftrightarrow x^3\left(x-2\right)+x\left(x-2\right)=0\)

\(\Leftrightarrow\left(x^3+x\right)\left(x-2\right)=0\)

\(\Leftrightarrow x\left(x^2+1\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)