Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2)
a) \(3x^3-3x=0\)
\(\Leftrightarrow3x\left(x^2-1\right)=0\)
\(\Leftrightarrow3x\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x=0\\x-1=0\\x+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)
Vậy x=0 ; x=-1 ; x=1
b) \(x^2-x+\dfrac{1}{4}=0\)
\(\Leftrightarrow x^2-2.x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2=0\)
\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2=0\)
\(\Leftrightarrow x-\dfrac{1}{2}=0\)
\(\Leftrightarrow x=\dfrac{1}{2}\)
Vậy \(x=\dfrac{1}{2}\)
1)
a) \(\left(x-2\right)\left(x^2+3x+4\right)\)
\(\Leftrightarrow x^3+3x^2+4x-2x^2-6x-8\)
\(\Leftrightarrow x^3+x^2-2x-8\)
b) \(\left(x-2\right)\left(x-x^2+4\right)\)
\(=x^2-x^3+4x-2x+2x^2-8\)
\(=3x^2-x^3+2x-8\)
c) \(\left(x^2-1\right)\left(x^2+2x\right)\)
\(=x^4+2x^3-x^2-2x\)
d) \(\left(2x-1\right)\left(3x+2\right)\left(3-x\right)\)
\(=\left(6x^2+4x-3x-2\right)\left(3-x\right)\)
\(=18x^2+12x-9x-6-6x^3-4x^2+3x^2+2x\)
\(=17x^2+5x-6-6x^3\)

Bài 2: a) \(3x^3-3x=0\Leftrightarrow3x\left(x^2-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm1\end{cases}}\)
b) \(x^2-x+\frac{1}{4}=0\Leftrightarrow x^2-2.\frac{1}{2}+\left(\frac{1}{2}\right)^2=0\Leftrightarrow\left(x-\frac{1}{2}\right)^2=0\)
\(\Leftrightarrow x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}\)

dòng thứ tư câu a quên chưa chuyển vế 15-9 rồi kìa phải là 45x=6 mới đúng nha

a) 3x^3-12x=0
3x(x^2-4)=0
3x(x-2)(x+2)=0
suy ra 3x=0 suy ra x=0
x-2=0 x=2
x+2=0 x= -2
b) (x-3)^2-(x-3)(3-x)^2=0
(x-3)^2-(x-3)(x-3)^2=0
(x-3)^2(1-x+3)=0
(x-3)^2(4-x)=0
suy ra x-3=0 suy ra x=3
4-x=0 x=4
a) và b) đã nhé bạn

a,\(3x\left(x-1\right)+x-1=0\)
\(\Rightarrow3x\left(x-1\right)+\left(x-1\right)=0\)
\(\Rightarrow\left(3x+1\right).\left(x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}3x+1=0\\x-1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{1}{3}\\x=1\end{matrix}\right.\)
c,\(\left(2x-1\right)^2-25=0\)
\(\Rightarrow\left(2x-1\right)^2=25\)
\(\Rightarrow\left(2x-1\right)^2=5^2\)
\(\Rightarrow2x-1=\pm5\)
\(\Rightarrow\left[{}\begin{matrix}2x-1=5\\2x-1=-5\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=6\\2x=-4\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)

a)
\(\left(3x^2-x+1\right)\left(x-1\right)+x^2\left(4-3x\right)=\frac{5}{2}\)
\(\Leftrightarrow3x^3-x^2+x-3x^2+x-1+4x^2-3x^3=\frac{5}{2}\)
\(\Leftrightarrow2x-1=\frac{5}{2}\Leftrightarrow2x=1+\frac{5}{2}=\frac{7}{2}\Leftrightarrow x=\frac{7}{4}\)
b)
\(4\left(x+1\right)^2+\left(2x-1\right)^2-8\left(x-1\right)\left(x+1\right)=11\)
\(\Leftrightarrow4\left(x^2+2x+1\right)+\left(4x^2-4x+1\right)-8\left(x^2-1\right)=11\)
\(\Leftrightarrow4x^2+8x+4+4x^2-4x+1-8x^2+8=11\)
\(\Leftrightarrow8x+4-4x+1+8=11\Leftrightarrow4x+13=11\Leftrightarrow4x=-2\Leftrightarrow x=-\frac{1}{2}\)
c)
\(\left(2x-1\right)^2+\left(x+3\right)^2-5\left(x+7\right)\left(x-7\right)=0\)
\(\Leftrightarrow4x^2-4x+1+x^2+6x+9-5\left(x^2-7^2\right)=0\)
\(\Leftrightarrow4x^2-4x+1+x^2+6x+9-5x^2+245=0\)
\(\Leftrightarrow-4x+1+6x+9+245=0\Leftrightarrow2x+255=0\Leftrightarrow x=-\frac{255}{2}\).
a ) ( 3x2 - x + 1 ) ( x + 1 ) + x2 ( 4 - 3x ) = 5/2
=> 3x3 + 3x2 - x2 - x + x + 1 + 4x2 - 3x3 = 5/2
=> 6x2 + 1 = 5/2
=> 6x2 = 1,5
=> x2 = 0,25
=> x = 0,5
a) x(x - 2) + (x - 2) = 0
=> (x + 1)(x - 2) = 0
=> \(\orbr{\begin{cases}x+1=0\\x-2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-1\\x=2\end{cases}}\)
Vậy \(x\in\left\{-1;2\right\}\)
b) \(\frac{2}{3}x\left(x^2-4\right)=0\)
=> x(x2 - 4) = 0
=> \(\orbr{\begin{cases}x=0\\x^2-4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x^2=2^2\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=\pm2\end{cases}}\)
g) (x + 2)2 - x + 4 = 0
=> x2 + 4x + 4 - x + 4 = 0
=> x2 + 3x + 8 = 0
=> (x2 + 3x + 9/4) + 23/4 = 0
=> (x + 3/2)2 + 23/4 \(\ge\frac{23}{4}>0\)
=> Phương trình vô nghiệm
h) (x + 2)2 = (2x - 1)2
=> (x + 2)2 - (2x - 1)2 = 0
=> (x + 2 - 2x + 1)(x + 2 + 2x - 1) = 0
=> (-x + 3)(3x + 1) = 0
=> \(\orbr{\begin{cases}-x+3=0\\3x+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=-\frac{1}{3}\end{cases}}\)
=> \(x\in\left\{3;-\frac{1}{3}\right\}\)
a) x( x - 2 ) + x - 2 = 0
⇔ x( x - 2 ) + 1( x - 2 ) = 0
⇔ ( x - 2 )( x + 1 ) = 0
⇔ \(\orbr{\begin{cases}x-2=0\\x+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=-1\end{cases}}\)
b) 2/3x( x2 - 4 ) = 0
⇔ \(\orbr{\begin{cases}\frac{2}{3}x=0\\x^2-4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm2\end{cases}}\)
g) ( x + 2 )2 - x + 4 = 0
⇔ x2 + 4x + 4 - x + 4 = 0
⇔ x2 + 3x + 8 = 0 (*)
Ta có : x2 + 3x + 8 = ( x2 + 3x + 9/4 ) + 23/4 = ( x + 3/2 )2 + 23/4 ≥ 23/4 > 0 ∀ x
=> (*) không xảy ra
=> Pt vô nghiệm
h) ( x + 2 )2 = ( 2x - 1 )2
⇔ ( x + 2 )2 - ( 2x - 1 )2 = 0
⇔ [ ( x + 2 ) - ( 2x - 1 ) ][ ( x + 2 ) + ( 2x - 1 ) ] = 0
⇔ ( x + 2 - 2x + 1 )( x + 2 + 2x - 1 ) = 0
⇔ ( 3 - x )( 3x + 1 ) = 0
⇔ \(\orbr{\begin{cases}3-x=0\\3x+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-\frac{1}{3}\end{cases}}\)