K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

c) Ta có(x-1)2 >= 0 với mọi x

(y+3)2>=0 với mọi c

=> (x-1)2+(y+3)2 >= 0 với mọi x,y

Dấu bằng xảy ra khi và chỉ khi

(x-1)2=0 và (y+3)2=0

=> x=1 và y=-3

a) GTLN là 2

9 tháng 1 2018

a) \(A=5-3.\left(3x-1\right)^2=-\left[3\left(3x-1\right)^2-5\right]\)

Ta có: \(\left(3x-1\right)^2\ge0\forall x\)

\(\Rightarrow3.\left(3x-1\right)^2\ge0\)

\(\Rightarrow3\left(3x-1\right)^2-5\ge-5\forall x\)

\(\Rightarrow-\left[3\left(3x-1\right)^2-5\right]\ge5\forall x\)

Vậy \(MinA=5\Leftrightarrow x=\dfrac{1}{3}\)

14 tháng 6 2015

a,Ta co : (x+1)=0 va (x-4)=0

TH1:

(x+1)=0

x      = 0-1

x      = -1

TH2:

(x-4)=0

x     = 0 - 4 

x     = -4

=>x=-4 va x=-1