K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2021

công thức :

6.tổng hai lập phương :

A3 + B3 = ( A+B).(A2 - AB + B2 )

7. hiệu hai lập phương :

A3 - B3 = ( A-B).( A2+ AB + B2 )

*Sxl

21 tháng 7 2021

công thức 6.Tổng 2 lập phương

với a và b là biểu thức tùy ý ta có:A3+B3 =(A+B)(A2-AB+B2)

công thức 7:hiệu 2 lập phuong

A3-B3=(A-B)(A2+AB+B2)

1. Bình phương của một tổng

– Bình phương của một tổng bằng bình phương số thứ nhất cộng với hai lần tích số thứ nhân nhân số thứ hai rồi cộng với bình phương số thứ hai.

(A + B)2 = A2 + 2AB + B2

2. Bình phương của một hiệu

– Bình phường của một hiệu bằng bình phương số thứ nhất trừ đi hai lần tích số thứ nhất nhân số thứ 2 rồi cộng với bình phương số thứ hai.

(A – B)2 = A2 – 2AB + B2

3. Hiệu hai bình phương

– Hiệu hai bình phương bằng hiệu hai số đó nhân tổng hai số đó.

A2 – B2 = (A + B)(A – B)

4. Lập phương của một tổng

– Lập phương của một tổng = lập phương số thứ nhất + 3 lần tích bình phương số thứ nhất nhân số thứ hai + 3 lần tích số thứ nhất nhân bình phương số thứ hai + lập phương số thứ hai.

(A + B)3 = A3 + 3A2B + 3AB2 + B3

5. Lập phương của một hiệu

– Lập phương của một hiệu = lập phương số thứ nhất – 3 lần tích bình phương số thứ nhất nhân số thứ hai + 3 lần tích số thứ nhất nhân bình phương số thứ hai – lập phương số thứ hai.

(A – B)3 = A3 – 3A2B + 3AB2 – B3

6. Tổng hai lập phương

– Tổng của hai lập phương bằng tổng hai số đó nhân với bình phương thiếu của hiệu.

A3 + B = (A + B)(A– AB + B2)

7. Hiệu hai lập phương

– Hiệu của hai lập phương bằng hiệu của hai số đó nhân với bình phương thiếu của tổng.

A3 – B3 = (A – B)(A2 + AB + B2)

5 tháng 10 2019

\(\left(A+B\right)^2=A^2+2.A.B+B^2\)

\(\left(A-B\right)^2=A^2-2.A.B+B^2\)

\(A^2-B^2=\left(A+B\right)\left(A-B\right)\)

\(\left(A+B\right)^3=A^3+3.A^2.B+3.A.B^2+B^3\)

\(\left(A-B\right)^3=A^3-3.A^2.B+3.A.B^2-B^3\)

\(A^3+B^3=\left(A+B\right)\left(A^2+A.B-B^2\right)\)

\(A^3-B^3=\left(A-B\right)\left(A^2+A.B+B^2\right)\)

16 tháng 12 2021

Khi so sánh 2 số nào đó người ta có thể dùng khái niệm tỉ số phần trăm để nói số này bằng bao nhiêu phần trăm số kia. Chẳng hạn 20 bằng 20% của 100, năng suất lao động của công nhân A bằng 70% năng suất lao động của công nhân B, học sinh giỏi của lớp chiếm 75% sĩ số lớp, có 10% học sinh của trường được tuyên dương,...

16 tháng 12 2021

lấy số tổng coi là 100% , lấy số tổng chia 100 là coi 100 này là 100 % lấy tổng chia 100 là ra 1 %

4 tháng 10 2023

Đoạn mạch mắc song song: \(R_{tđ}=\dfrac{R_1\cdot R_2}{R_1+R_2}=\dfrac{10\cdot R_2}{10+R_2}\)

\(\Rightarrow R_{tđ}\cdot\left(10+R_2\right)=10\cdot R_2\)

\(\Rightarrow10R_{tđ}+R_{tđ}\cdot R_2=10R_2\)\(\Rightarrow10R_{tđ}=R_2\cdot\left(10-R_{tđ}\right)\)

\(\Rightarrow R_2=\dfrac{10R_{tđ}}{10-R_{tđ}}\)

4 tháng 10 2023

R tđ là j v anh

 

\(\sqrt[3]{15\sqrt{3}-26}=\sqrt[3]{-\left(26-15\sqrt{3}\right)}\)

\(=-\sqrt[3]{8-3\cdot2^2\cdot\sqrt{3}+3\cdot2\cdot3-3\sqrt{3}}\)

\(=-\sqrt[3]{\left(2-\sqrt{3}\right)^3}=-\left(2-\sqrt{3}\right)=-2+\sqrt{3}\)

 

25 tháng 8 2023

giúp mình với mình đang cần gấp

 

 

26 tháng 8 2016

tui chỉ biết 7 hăng cơ bản thôi

6 tháng 9 2016

7 hằng đẳng thức cơ bản:

1, (a + b)2 = a+ 2ab + b2

2, (a _ b)2 = a2 _ 2ab + b2

3, a- b2 = ( a - b ). (a + b )

4. (A+B)3= A3+3A2B +3AB2+B3

5. (A – B)3 = A3- 3A2B+ 3AB2- B3

6. A+ B3= (A+B)(A2- AB +B2)

7. A3- B3= (A- B)(A2+ AB+ B2)

Mở rộng :

8. (A+B+C)2= A2+ B2+C2+2 AB+ 2AC+ 2BC

9. (a+b−c)2=a2+b2+c2+2ab−2bc−2ac(a+b−c)2=a2+b2+c2+2ab−2bc−2ac


10. (a−b−c)2=a2+b2+c2−2ab−2ac+2bc(a−b−c)2=a2+b2+c2−2ab−2ac+2bc

11. a3+b3=(a+b)3−3ab(a+b)a3+b3=(a+b)3−3ab(a+b)


12. a3−b3=(a−b)3+3ab(a−b)a3−b3=(a−b)3+3ab(a−b)

13. (a+b+c)3=a3+b3+c3+3(a+b)(b+c)(c+a)(a+b+c)3=a3+b3+c3+3(a+b)(b+c)(c+a)

14. a3+b3+c3−3abc=(a+b+c)(a2+b2+c2−ab−bc−ac)a3+b3+c3−3abc=(a+b+c)(a2+b2+c2−ab−bc−ac) 

15. (a−b)3+(b−c)3+(c−a)3=3(a−b)(b−c)(c−a)(a−b)3+(b−c)3+(c−a)3=3(a−b)(b−c)(c−a)

16. (a+b)(b+c)(c+a)−8abc=a(b−c)2+b(c−a)2+c(a−b)2(a+b)(b+c)(c+a)−8abc=a(b−c)2+b(c−a)2+c(a−b)2

17. (a+b)(b+c)(c+a)=(a+b+c)(ab+bc+ca)−abc(a+b)(b+c)(c+a)=(a+b+c)(ab+bc+ca)−abc

19. ab2+bc2+ca2−a2b−b2c−c2a=(a−b)3+(b−c)3+(c−a)33ab2+bc2+ca2−a2b−b2c−c2a=(a−b)3+(b−c)3+(c−a)33

20.ab3+bc3+ca3−a3b−b3c−c3a=(a+b+c)[(a−b)3+(b−c)3+(c−a)3]3ab3+bc3+ca3−a3b−b3c−c3a=(a+b+c)[(a−b)3+(b−c)3+(c−a)3]3