Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
* Vì \(a,b\ge1\)nên \(\left(a-1\right)\left(b-1\right)\ge0\Leftrightarrow ab+1\ge a+b\)
Một cách tương tự: \(bc+1\ge b+c;ca+1\ge c+a\)
Với mọi số thực \(a\ge1\) ta luôn có: \(\left(a-1\right)^2\ge0\Leftrightarrow a^2\ge2a-1\Leftrightarrow\frac{1}{2a-1}\ge\frac{1}{a^2}\)
Tương tự: \(\frac{1}{2b-1}\ge\frac{1}{b^2};\frac{1}{2c-1}\ge\frac{1}{c^2}\)
Từ đó suy ra \(VT\ge\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{4ab}{ab+1}+\frac{4bc}{bc+1}+\frac{4ca}{ca+1}\)\(=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+4-\frac{4}{ab+1}+4-\frac{4}{bc+1}+4-\frac{4}{ca+1}\)\(\ge\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}-\frac{4}{ab+1}-\frac{4}{bc+1}-\frac{4}{ca+1}+12\)\(\ge\frac{4}{\left(a+b\right)^2}+\frac{4}{\left(b+c\right)^2}+\frac{4}{\left(c+a\right)^2}-\frac{4}{a+b}-\frac{4}{b+c}-\frac{4}{c+a}+12\)\(=\left(\frac{2}{a+b}-1\right)^2+\left(\frac{2}{b+c}-1\right)^2+\left(\frac{2}{c+a}-1\right)^2+9\ge9\)
Đẳng thức xảy ra khi a = b = c = 1
Từ \(a+b\ge1=>b\ge1-a>0\) ta có:
A = \(\dfrac{8a^2+b}{4a}+b^2\ge\dfrac{8a^2+1-a}{4a}+\left(1-a\right)^2\)
=\(\dfrac{8a^2-a+1+4a^3-8a^2+4a}{4a}=\dfrac{4a^3-4a^2+a+4a^2-4a+1+6a}{4a}\)
= \(\dfrac{a\left(2a-1\right)^2+\left(2a-1\right)^2}{4a}+\dfrac{3}{2}=\dfrac{\left(2a-1\right)^2\left(a+1\right)}{4a}+\dfrac{3}{2}\left(1\right)\)
Vì với a>0 thì\(\dfrac{\left(2a-1\right)^2\left(a+1\right)}{4a}\ge0\)
Dấu = xảy ra khi a=1/2
Nên từ (1) => A\(\ge0+\dfrac{3}{2}\) hay A\(\ge\dfrac{3}{2}\)
Vậy GTNN của A=3/2 khi a=b=1/2
A = \(\dfrac{8a^2+b}{4a}+b^2\)
Ta có: a + b \(\ge\) 1 \(\Leftrightarrow\) b \(\ge\) 1 - a
\(\Rightarrow\) A \(\ge\) \(\dfrac{8a^2+1-a}{4a}+\left(1-a\right)^2\)
\(\Leftrightarrow\) A \(\ge\) 2a + \(\dfrac{1}{4a}\) - \(\dfrac{1}{4}\) + 1 - 2a + a2
\(\Leftrightarrow\) A \(\ge\) a2 + \(\dfrac{1}{4a}\) + \(\dfrac{3}{4}\)
\(\Leftrightarrow\) A \(\ge\) a2 + \(\dfrac{1}{8a}\) + \(\dfrac{1}{8a}\) + \(\dfrac{3}{4}\)
Áp dụng BĐT Cô-si cho 3 số dương a2; \(\dfrac{1}{8a}\); \(\dfrac{1}{8a}\)
a2 + \(\dfrac{1}{8a}\) + \(\dfrac{1}{8a}\) \(\ge\) 3\(\sqrt[3]{\dfrac{a^2}{64a^2}}\) = 3\(\sqrt[3]{64}\) = 3.4 = 12
\(\Leftrightarrow\) a2 + \(\dfrac{1}{8a}\) + \(\dfrac{1}{8a}\) + \(\dfrac{3}{4}\) \(\ge\) 12 + \(\dfrac{3}{4}\) = \(\dfrac{51}{4}\)
Hay A \(\ge\) a2 + \(\dfrac{1}{8a}\) + \(\dfrac{1}{8a}\) + \(\dfrac{3}{4}\) \(\ge\) \(\dfrac{51}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow\) a2 = \(\dfrac{1}{8a}\) \(\Leftrightarrow\) 8a3 = 1 \(\Leftrightarrow\) a3 = \(\dfrac{1}{8}\) \(\Leftrightarrow\) a = \(\dfrac{1}{2}\)
và b = 1 - a \(\Leftrightarrow\) b = 1 - \(\dfrac{1}{2}\) = \(\dfrac{1}{2}\)
Vậy MinA = \(\dfrac{51}{4}\) \(\Leftrightarrow\) a = b = \(\dfrac{1}{2}\)
Chúc bn học tốt! (ko chắc lắm đâu)
+ \(2a+b+c=\left(a+b\right)+\left(a+c\right)\)
\(\ge2\sqrt{\left(a+b\right)\left(a+c\right)}\) ( theo AM-GM )
\(\Rightarrow\left(2a+b+c\right)^2\ge4\left(a+b\right)\left(a+c\right)\)
\(\Rightarrow\frac{1}{\left(2a+b+c\right)^2}\le\frac{1}{4\left(a+b\right)\left(a+c\right)}\)
Dấu "=" xảy ra \(\Leftrightarrow b=c\)
+ Tương tự : \(\frac{1}{\left(2b+c+a\right)^2}\le\frac{1}{4\left(a+b\right)\left(b+c\right)}\). Dấu "=" xảy ra <=> a = c
\(\frac{1}{\left(2c+a+b\right)^2}\le\frac{1}{4\left(a+c\right)\left(b+c\right)}\). Dấu "=" xảy ra \(\Leftrightarrow a=b\)
Do đó : \(P\le\frac{1}{4}\left(\frac{1}{\left(a+b\right)\left(a+c\right)}+\frac{1}{\left(a+b\right)\left(b+c\right)}+\frac{1}{\left(a+c\right)\left(b+c\right)}\right)\)
\(\Rightarrow P\le\frac{1}{2}\cdot\frac{a+b+c}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
\(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge2\sqrt{ab}\cdot2\sqrt{bc}\cdot2\sqrt{ca}\)\(=8abc\)
\(\Rightarrow P\le\frac{a+b+c}{16abc}\)
+ \(\frac{1}{a^2}+\frac{1}{b^2}\ge\frac{2}{ab}\). Dấu :=" xảy ra \(\Leftrightarrow a=b\)
\(\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{2}{bc}\). Dấu "=" xảy ra <=> b = c
\(\frac{1}{c^2}+\frac{1}{a^2}\ge\frac{2}{ca}\). Dấu "=" xảy ra <=> c = a
\(\Rightarrow2\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\ge2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)\)
\(\Rightarrow3\ge\frac{a+b+c}{abc}\) \(\Rightarrow a+b+c\le3abc\)
\(\Rightarrow P\le\frac{3abc}{16abc}=\frac{3}{16}\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)
\(\dfrac{a}{4b^2+1}+\dfrac{b}{4a^2+1}=\dfrac{a\left(4b^2+1\right)}{4b^2+1}-\dfrac{4ab^2}{4b^2+1}+\dfrac{b\left(4a^2+1\right)}{4a^2+1}-\dfrac{4a^2b}{4b^2+1}\)
\(\ge a-\dfrac{4ab^2}{4b}+b-\dfrac{4a^2b}{4a}\) (bđt Cô-si)
=a-ab+b-ab=a+b-2ab=4ab-2ab=2ab
Lại có a+b=4ab \(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}=4\ge\dfrac{2}{2\sqrt{ab}}\Rightarrow4\sqrt{ab}\ge2\Rightarrow ab\ge\dfrac{1}{4}\)
\(\Rightarrow2ab\ge\dfrac{1}{2}\Rightarrow\dfrac{a}{4b^2+1}+\dfrac{b}{4a^2+1}\ge\dfrac{1}{2}\)
Dấu ''='' xảy ra khi \(a=b=\dfrac{1}{2}\)
\(\dfrac{a}{4b^2+1}+\dfrac{b}{4a^2+1}\ge\dfrac{1}{2}\)
\(\Leftrightarrow a-\dfrac{a}{4b^2+1}+b-\dfrac{b}{4a^2+1}\le a+b-\dfrac{1}{2}\)
\(\Rightarrow\dfrac{4ab^2}{4b^2+1}+\dfrac{4ba^2}{4a^2+1}\le4ab-\dfrac{1}{2}\)
\(\sum\dfrac{4ab^2}{4b^2+1}\le^{CS}2ab\)
\(\Rightarrow CM:2ab\le4ab-\dfrac{1}{2}\Leftrightarrow ab\ge\dfrac{1}{4}\)
Từ GT \(\Rightarrow4ab=a+b\ge2\sqrt{ab}\Leftrightarrow ab\ge\dfrac{1}{4}\)
\(\Rightarrow dpcm\)
Em tham khảo ở đây:
xét các số thực a,b,c (a≠0) sao cho phương trình ax2+bx+c=0 có 2 nghiệm m, n thỏa mãn \(0\le m\le1;0\le m\le1\). tìm GTN... - Hoc24