Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{a}{1+4b^2}=\frac{a\left(1+4b^2\right)-4ab^2}{1+4b^2}=a-\frac{4ab^2}{1+4b^2}\ge a-\frac{4ab^2}{2\sqrt{4b^2.1}}=a-\frac{2ab^2}{2b}=a-ab\)(bđt cosi)
CMTT: \(\frac{b}{1+4a^2}\ge b-ab\)
=> P \(\ge a+b-2ab=4ab-2ab=2ab\)
Mặt khác ta có: \(a+b\ge2\sqrt{ab}\)(cosi)
=> \(4ab\ge2\sqrt{ab}\) <=> \(2ab\ge\sqrt{ab}\)<=> \(4a^2b^2-ab\ge0\) <=> \(ab\left(4ab-1\right)\ge0\)
<=> \(\orbr{\begin{cases}ab\le0\left(loại\right)\\ab\ge\frac{1}{4}\end{cases}}\)(vì a,b là số thực dương)
=> P \(\ge2\cdot\frac{1}{4}=\frac{1}{2}\)
Dấu "=" xảy ra <=> a = b = 1/2
Vậy MinP = 1/2 <=> a = b= 1/2
Ta có: \(a+b=4ab\le\left(a+b\right)^2\Leftrightarrow\left(a+b\right)\left[\left(a+b\right)-1\right]\ge0\)
Mà \(a+b>0\Rightarrow a+b\ge1\)
Áp dụng BĐT Cô-si, ta có: \(P=\frac{a}{1+4b^2}+\frac{b}{1+4a^2}=\left(a-\frac{4ab^2}{1+4b^2}\right)+\left(b-\frac{4a^2b}{1+4a^2}\right)\)\(\ge\left(a-\frac{4ab^2}{4b}\right)+\left(b-\frac{4a^2b}{4a}\right)=\left(a+b\right)-2ab=\left(a+b\right)-\frac{a+b}{2}=\frac{a+b}{2}\ge\frac{1}{2}\)
Đẳng thức xảy ra khi a = b = 1/2
a/ \(\frac{4bc-a^2}{bc+2a^2}.\frac{4ab-c^2}{ab+2c^2}.\frac{4ac-b^2}{ac+2b^2}\)
\(=\frac{4bc-\left(b+c\right)^2}{bc+2\left(b+c\right)^2}.\frac{4\left(-b-c\right)b-c^2}{\left(-b-c\right)b+2c^2}.\frac{4\left(-b-c\right)c-b^2}{\left(-b-c\right)c+2b^2}\)
\(=\frac{-\left(b-c\right)^2}{\left(c+2b\right)\left(b+2c\right)}.\frac{-\left(c+2b\right)^2}{-\left(b-c\right)\left(b+2c\right)}.\frac{-\left(b+2c\right)^2}{\left(b-c\right)\left(c+2b\right)}=1\)
\(P=\left(\frac{1}{1+\frac{b}{a}}\right)^2+\left(\frac{1}{1+\frac{c}{b}}\right)^2+\frac{1}{4}.\frac{c}{a}\)
Đặt \(\left\{{}\begin{matrix}\frac{b}{a}=x>0\\\frac{c}{b}=y>0\end{matrix}\right.\) \(\Rightarrow\frac{c}{a}=xy\)
\(P=\frac{1}{\left(1+x\right)^2}+\frac{1}{\left(1+y\right)^2}+\frac{xy}{4}\ge\frac{1}{1+xy}+\frac{xy}{4}\)
\(P\ge\frac{1}{1+xy}+\frac{1+xy}{4}-\frac{1}{4}\ge2\sqrt{\frac{1+xy}{4\left(1+xy\right)}}-\frac{1}{4}=\frac{3}{4}\)
\(P_{min}=\frac{3}{4}\) khi \(xy=1\) hay \(a=c\)
\(3\left(a^2+b^2+c^2\right)=\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)
\(=a^3+ab^2+b^3+bc^2+c^3+ca^2+a^2b+b^2c+c^2a\)
\(\ge2\sqrt{a^3.ab^2}+2\sqrt{b^3.bc^2}+2\sqrt{c^3.ca^2}+a^2b+b^2c+c^2a=3\left(a^2b+b^2c+c^2a\right)\)
\(\Rightarrow a^2+b^2+c^2\ge a^2b+b^2c+c^2a\)
\(\Rightarrow P\ge a^2+b^2+c^2+\frac{ab+bc+ca}{a^2+b^2+c^2}=a^2+b^2+c^2+\frac{\left(a+b+c\right)^2-\left(a^2+b^2+c^2\right)}{2\left(a^2+b^2+c^2\right)}\)
\(P\ge a^2+b^2+c^2+\frac{9}{2\left(a^2+b^2+c^2\right)}-\frac{1}{2}=\frac{a^2+b^2+c^2}{2}+\frac{9}{2\left(a^2+b^2+c^2\right)}+\frac{a^2+b^2+c^2}{2}-\frac{1}{2}\)
\(P\ge2\sqrt{\frac{9\left(a^2+b^2+c^2\right)}{4\left(a^2+b^2+c^2\right)}}+\frac{\left(a+b+c\right)^2}{3.2}-\frac{1}{2}=4\)
\(P_{min}=4\) khi \(a=b=c=1\)
Số c là số gì vậy bạn?