Cho tam giác ABC vuông tại B . Tia phân giác của BAC cắt BC tại D . Trên cạnh AC lấy điểm E sao cho AE=AB.
a) C/m Tam giác ABD = tam giác AED
b) Trên tia AB lấy điểm F sao cho BF=CE. C/m DF=DC
c) C/m 3 điểm E , D ,F thẳng hàng.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABD và ΔAED có
AB=AE
\(\widehat{BAD}=\widehat{EAD}\)
AD chung
Do đó: ΔABD=ΔAED
b: Xét ΔBDF và ΔEDC có
\(\widehat{BDF}=\widehat{EDC}\)
DB=DE
\(\widehat{DBF}=\widehat{DEC}\)
Do đó: ΔBDF=ΔEDC
a) - Xét tam giác ABD và tam giác AED, có:
+ Chung AD
+ góc BAD = góc EAD (AD là tia phân giác của góc BAC)
+ AB = AE (gt)
=> tam giác ABD = tam giác AED (cgc)
a: Xét ΔBAD và ΔBMD có
BA=BM
góc ABD=góc MBD
BD chung
=>ΔBAD=ΔBMD
b: DA=DM
=>góc DAM=góc DMA
a: Xét ΔBAE và ΔBDE có
BA=BD
\(\widehat{ABE}=\widehat{DBE}\)
BE chung
Do đó: ΔBAE=ΔBDE
b: Xét ΔBFC có
BH là đường cao
BH là đường phân giác
Do đó: ΔBFC cân tại B
c: Ta có: ΔBFC cân tại B
=>BF=BC
Xét ΔBDF và ΔBAC có
BD=BA
\(\widehat{DBF}\) chung
BF=BC
Do đó: ΔBDF=ΔBAC
=>\(\widehat{BDF}=\widehat{BAC}=90^0\)
Ta có: ΔBAE=ΔBDE
=>\(\widehat{BAE}=\widehat{BDE}\)
mà \(\widehat{BAE}=90^0\)
nên \(\widehat{BDE}=90^0\)
mà \(\widehat{BDF}=90^0\)
và DE,DF có điểm chung là D
nên D,E,F thẳng hàng
Giải:
Hình bạn tự vẽ nhé.
a) Ta có: AD là tia phân giác của góc BAC (gt)
=> Góc BAD = góc DAC
hay góc BAD = góc DAE
Xét tam giác ABD và tam giác ADE có:
AD cạnh chung
Góc BAD = góc DAE (chứng minh trên)
AB = AE (gt)
=> Tam giác ABD = tam giác AED (c.g.c) (đpcm)
b) Ta có: Góc DBM + ABD = 180o (2 góc kề bù)
=> Góc DBM = 180o - ABD = 180o - 90o = 90o
Lại có: Góc AED = góc ABD (vì tam giác ABD = tam giác AED)
Vì góc ABD = 90o nên góc AED = 90o
Mà góc CED + góc AED = 180o
=> Góc CED = 180o - 90o = 90o
=> Góc DBM = góc CED
Xét tam giác BDM và tam giác CDE có:
BD = DE (vì tam giác ABD = tam giác AED)
Góc DBM = góc CED (chứng minh trên)
BM = CE (gt)
=> Tam giác BDM = tam giác EDC (c.g.c)
=> DM = CD (2 cạnh tương ứng) (đpcm)
c) Ta có: tam giác BDM = tam giác EDC (chứng minh trên)
=> Góc BDM= góc CDE (2 góc tương ứng)
Mà góc CDE + góc BDE = 180o (2 góc kề bù)
=> Góc BDM + góc BDE = 180o
hay góc EDM = 180o
=> 3 điểm D, E, M thẳng hàng (đpcm)
a: Xét ΔABD và ΔEBD có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó: ΔABD=ΔEBD
b: ΔABD=ΔEBD
=>\(\widehat{BAD}=\widehat{BED}\)
mà \(\widehat{BAD}=90^0\)
nên \(\widehat{BED}=90^0\)
Xét ΔDAF và ΔDEC có
DA=DE
\(\widehat{ADF}=\widehat{EDC}\)
DF=DC
Do đó: ΔDAF=ΔDEC
=>AF=CE
c: Ta có: ΔDAF=ΔDEC
=>\(\widehat{DAF}=\widehat{DEC}\)
mà \(\widehat{DEC}=90^0\)
nên \(\widehat{DAF}=90^0\)
Ta có: \(\widehat{BAD}+\widehat{DAF}=\widehat{BAF}\)
=>\(\widehat{BAF}=90^0+90^0=180^0\)
=>B,A,F thẳng hàng
Xét ΔBFC có BA/AF=BE/EC
nên AE//FC
a: Xét ΔABE và ΔADE có
AB=AD
\(\widehat{BAE}=\widehat{DAE}\)
AE chung
DO đó: ΔABE=ΔADE
b: Ta có: ΔABD cân tại A
mà AI là đường phân giác
nên I là trung điểm của BD