Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Xét tam giác ABD và tam giác AED
AB=AE(Gt)
BAD=DAE(vì AD là tia p/giác)
AD là cạnh chung)
\(\Rightarrow\) tam giác ABD=tam giác AED(c.g.c)
b)Xét tam giác ADF và tam giác ADC
AF+AC(Gt)
BAD=DAE(vì AD là tia p/giác)
AD là cạnh chung
\(\Rightarrow\)tam giác ADF=tam giác ADC(c.g.c)
\(\Rightarrow\)DF=DC(cặp cạnh tương ứng)
c)Xét tam giác AMF và tam giác AMC
AF+AC(Gt)
BAD=DAE(vì AD là tia p/giác)
AD là cạnh chung
\(\Rightarrow\)tam giác AMF=tam giác AMC(c.g.c)
\(\Rightarrow\)AMF=AMC(cặp góc tương ứng)
Mà AMF+AMC=1800(kề bù)
\(\Rightarrow\)AMF=AMC=1800:2=900
Do đó Am vuông góc với CF
a)XÉT ▲ABD VÀ ▲AED CÓ:
AD CHUNG
AB=AE(GT)
GÓC BAD= GÓC EAD (AD LÀ PHÂN GIÁC)
=> ▲ABD= ▲AED(C-G-C)
a: Xét ΔABD và ΔAED có
AB=AE
\(\widehat{BAD}=\widehat{EAD}\)
AD chung
Do đó: ΔABD=ΔAED
b: Xét ΔBDF và ΔEDC có
\(\widehat{BDF}=\widehat{EDC}\)
DB=DE
\(\widehat{DBF}=\widehat{DEC}\)
Do đó: ΔBDF=ΔEDC
a: Xét ΔABD và ΔAED có
AB=AE
góc BAD=góc EAD
AD chung
Do đó: ΔABD=ΔAED
=>DB=DE
b: Xét ΔDBF và ΔDEC có
góc DBF=góc DEC
DB=DE
góc BDF=góc EDC
Do đo: ΔDBF=ΔDEC
c:ΔDBF=ΔDEC
nên góc BDF=góc EDC
=>góc BDF+góc BDE=180 độ
=>E,D,F thẳng hàng
a) - Xét tam giác ABD và tam giác AED, có:
+ Chung AD
+ góc BAD = góc EAD (AD là tia phân giác của góc BAC)
+ AB = AE (gt)
=> tam giác ABD = tam giác AED (cgc)
a: Xét ΔBAE và ΔBDE có
BA=BD
\(\widehat{ABE}=\widehat{DBE}\)
BE chung
Do đó: ΔBAE=ΔBDE
b: Xét ΔBFC có
BH là đường cao
BH là đường phân giác
Do đó: ΔBFC cân tại B
c: Ta có: ΔBFC cân tại B
=>BF=BC
Xét ΔBDF và ΔBAC có
BD=BA
\(\widehat{DBF}\) chung
BF=BC
Do đó: ΔBDF=ΔBAC
=>\(\widehat{BDF}=\widehat{BAC}=90^0\)
Ta có: ΔBAE=ΔBDE
=>\(\widehat{BAE}=\widehat{BDE}\)
mà \(\widehat{BAE}=90^0\)
nên \(\widehat{BDE}=90^0\)
mà \(\widehat{BDF}=90^0\)
và DE,DF có điểm chung là D
nên D,E,F thẳng hàng
Giải:
Hình bạn tự vẽ nhé.
a) Ta có: AD là tia phân giác của góc BAC (gt)
=> Góc BAD = góc DAC
hay góc BAD = góc DAE
Xét tam giác ABD và tam giác ADE có:
AD cạnh chung
Góc BAD = góc DAE (chứng minh trên)
AB = AE (gt)
=> Tam giác ABD = tam giác AED (c.g.c) (đpcm)
b) Ta có: Góc DBM + ABD = 180o (2 góc kề bù)
=> Góc DBM = 180o - ABD = 180o - 90o = 90o
Lại có: Góc AED = góc ABD (vì tam giác ABD = tam giác AED)
Vì góc ABD = 90o nên góc AED = 90o
Mà góc CED + góc AED = 180o
=> Góc CED = 180o - 90o = 90o
=> Góc DBM = góc CED
Xét tam giác BDM và tam giác CDE có:
BD = DE (vì tam giác ABD = tam giác AED)
Góc DBM = góc CED (chứng minh trên)
BM = CE (gt)
=> Tam giác BDM = tam giác EDC (c.g.c)
=> DM = CD (2 cạnh tương ứng) (đpcm)
c) Ta có: tam giác BDM = tam giác EDC (chứng minh trên)
=> Góc BDM= góc CDE (2 góc tương ứng)
Mà góc CDE + góc BDE = 180o (2 góc kề bù)
=> Góc BDM + góc BDE = 180o
hay góc EDM = 180o
=> 3 điểm D, E, M thẳng hàng (đpcm)
b: Xét tứ giác ABDC có
M là trung điểm của AD
M là trung điểm của BC
Do đó: ABDC là hình bình hành
Suy ra: CD//AB