-Tích của hai số dương x,y biết 4x=5y và \(x^2\)-\(y^2\)=1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$4x=5y\Rightarrow x=\frac{5}{4}y$. Khi đó:
$x^2-y^2=1$
$\Rightarrow (\frac{5}{4}y)^2-y^2=1$
$\Rightarrow \frac{25}{16}y^2-y^2=1$
$\Rightarrow \frac{9}{16}y^2=1\Rightarrow y^2=\frac{16}{9}$
$\Rightarrow y=\pm \frac{4}{3}$
Nếu $y=\frac{4}{3}$ thì $x=\frac{5}{4}.\frac{4}{3}=\frac{5}{3}$
$\Rightarrow xy=\frac{4}{3}.\frac{5}{3}=\frac{20}{9}$
Nếu $y=\frac{-4}{3}$ thì $x=\frac{5}{4}.\frac{-4}{3}=\frac{-5}{3}$
$\Rightarrow xy=\frac{-4}{3}.\frac{-5}{3}=\frac{20}{9}$
Vậy $xy=\frac{20}{9}$
a.
\(1-4x^2=\left(1-2x\right)\left(1+2x\right)\)
b.
\(8-27x^3=\left(2\right)^3-\left(3x\right)^3=\left(2-3x\right)\left(4+6x+9x^2\right)\)
c.
\(27+27x+9x^2+x^3=x^3+3.x^2.3+3.3^2.x+3^3\)
\(=\left(x+3\right)^3\)
d.
\(2x^3+4x^2+2x=2x\left(x^2+2x+1\right)=2x\left(x+1\right)^2\)
e.
\(x^2-y^2-5x+5y=\left(x-y\right)\left(x+y\right)-5\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y-5\right)\)
f.
\(x^2-6x+9-y^2=\left(x-3\right)^2-y^2=\left(x-3-y\right)\left(x-3+y\right)\)
a) x2-xy+5y-25
= x(2-y)+ 5(y-2)
= x(2-y)-5(2-y)
= (x-5)(2-y)
a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{4}=\dfrac{y}{-5}=\dfrac{-3x+2y}{-12-10}=\dfrac{55}{-22}=\dfrac{-5}{2}\)
Do đó: \(\left\{{}\begin{matrix}x=\dfrac{-20}{2}=-10\\y=\dfrac{25}{2}\end{matrix}\right.\)
b: Ta có: \(\dfrac{x}{y}=\dfrac{-7}{4}\)
nên \(\dfrac{x}{-7}=\dfrac{y}{4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{-7}=\dfrac{y}{4}=\dfrac{4x-5y}{-28-20}=\dfrac{72}{-48}=\dfrac{-3}{2}\)
Do đó: \(\left\{{}\begin{matrix}x=\dfrac{21}{2}\\y=\dfrac{-12}{2}=-6\end{matrix}\right.\)
TA có : 4x = 5y
=> \(\frac{x}{5}=\frac{y}{4}=t\)
=> x = 5t ; y = 4t
x^2 - y^2 = 25t^2 - 16t^2 = 1
=> 9t^2 = 1
=> t^2 = 1/9 => t = 1/3 ( vì x ; y dương => t dương )
(+) với t = 1/3 => x = 5.1/3 = 5/3
=> y = 4.1/3 = 4/3
Tích là : 5/3 . 4/3 = 20/9