K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 7 2021

\(\sqrt{4x^2-4x+1}=3x-2\)   

\(\sqrt{\left(2x-1\right)^2}=3x-2\)   

\(\left|2x-1\right|=3x-2\)   

\(\orbr{\begin{cases}2x-1=3x-2\\2x-1=-3x+2\end{cases}}\)   

\(\orbr{\begin{cases}1=x\\5x=1\end{cases}}\)    

\(\orbr{\begin{cases}x=1\\x=\frac{1}{5}\end{cases}}\)

ĐKXĐ: \(x\ge\frac{2}{3}\)

Ta có : \(\sqrt{4x^2-2x+1}+2=3x\)

\(\Leftrightarrow\sqrt{\left(2x-1\right)^2}=3x-2\)

\(\Leftrightarrow|2x-1|=3x-2\)

\(\Leftrightarrow2x-1=3x-2\)(do \(x\ge\frac{2}{3}\))

\(\Leftrightarrow x=1\left(TM\right)\)

Vậy tập nghiệm của PT là \(S=\left\{1\right\}\)

22 tháng 8 2019

a, \(x^4-4x^3-6x^2-4x+1=0\)(*)

<=> \(x^4+4x^2+1-4x^3-4x+2x^2-12x^2=0\)

<=> \(\left(x^2-2x+1\right)^2=12x^2\)

<=>\(\left(x-1\right)^4=12x^2\) <=> \(\left[{}\begin{matrix}\left(x-1\right)^2=\sqrt{12}x\\\left(x-1\right)^2=-\sqrt{12}x\end{matrix}\right.\)<=> \(\left[{}\begin{matrix}x^2-2x+1-\sqrt{12}x=0\left(1\right)\\x^2-2x+1+\sqrt{12}x=0\left(2\right)\end{matrix}\right.\)

Giải (1) có: \(x^2-2x+1-\sqrt{12}x=0\)

<=> \(x^2-2x\left(1+\sqrt{3}\right)+\left(1+\sqrt{3}\right)^2-\left(1+\sqrt{3}\right)^2+1=0\)

<=> \(\left(x-1-\sqrt{3}\right)^2-3-2\sqrt{3}=0\)

<=> \(\left(x-1-\sqrt{3}\right)^2=3+2\sqrt{3}\) <=> \(\left[{}\begin{matrix}x-1-\sqrt{3}=\sqrt{3+2\sqrt{3}}\\x-1-\sqrt{3}=-\sqrt{3+2\sqrt{3}}\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}x=\sqrt{3+2\sqrt{3}}+\sqrt{3}+1\left(ktm\right)\\x=-\sqrt{3+2\sqrt{3}}+\sqrt{3}+1\left(tm\right)\end{matrix}\right.\)

=> \(x=-\sqrt{3+2\sqrt{3}}+\sqrt{3}+1\)

Giải (2) có: \(x^2-2x+1+\sqrt{12}x=0\)

<=> \(x^2-2x\left(1-\sqrt{3}\right)+\left(1-\sqrt{3}\right)^2-\left(1-\sqrt{3}\right)^2+1=0\)

<=> \(\left(x+\sqrt{3}-1\right)^2=3-2\sqrt{3}\) .Có VP<0 => PT (2) vô nghiệm

Vậy pt (*) có nghiệm x=\(-\sqrt{3+2\sqrt{3}}+\sqrt{3}+1\)

27 tháng 4 2023

Cậu tách ra `2->3` câu thôi nhe

 

a: =>17x-5x-15-2x-5=0

=>10x-20=0

=>x=2

b: =>\(\dfrac{3x-6-5x-10}{\left(x+2\right)\left(x-2\right)}=\dfrac{11x+23}{\left(x+2\right)\left(x-2\right)}\)

=>11x+23=-2x-16

=>13x=-39

=>x=-3(nhận)

c: =>5x+7>=3x-3

=>2x>=-10

=>x>=-5

d: =>5(3x-1)=-2(x+1)

=>15x-5=-2x-2

=>17x=3

=>x=3/17

e: =>4x^2-1-4x^2-3x-2=0

=>-3x-3=0

=>x=-1

g: =>7x-5-8x+2-7<0

=>-x-10<0

=>x+10>0

=>x>-10

a: =>17x-5x-15-2x-5=0

=>10x-20=0

=>x=2

b: =>\(\dfrac{3x-6-5x-10}{\left(x+2\right)\left(x-2\right)}=\dfrac{11x+23}{\left(x+2\right)\left(x-2\right)}\)

=>11x+23=-2x-16

=>13x=-39

=>x=-3(nhận)

c: =>5x+7>=3x-3

=>2x>=-10

=>x>=-5

d: =>5(3x-1)=-2(x+1)

=>15x-5=-2x-2

=>17x=3

=>x=3/17

e: =>4x^2-1-4x^2-3x-2=0

=>-3x-3=0

=>x=-1

g: =>7x-5-8x+2-7<0

=>-x-10<0

=>x+10>0

=>x>-10

9 tháng 3 2023

a) \(2x^2-5x+1=0\)

\(\Delta=b^2-4ac\Rightarrow\left(-5\right)^2-4.2.1=17>0\)

Phương trình có 2 nghiệm phân biệt:

\(x_1=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{-\left(-5\right)+\sqrt{17}}{2.2}=\dfrac{5+\sqrt{17}}{4}\)

\(x_2=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{-\left(-5\right)-\sqrt{17}}{2.2}=\dfrac{5-\sqrt{17}}{4}\)

___________________________________________________

b) \(4x^2+4x+1=0\)

\(\Delta=b^2-4ac\Rightarrow4^2-4.4.1=0\)

Vậy phương trình có nghiệm kép:

___________________________________________________

c) \(5x^2-x+2=0\)

\(\Delta=b^2-4a\Rightarrow\left(-1\right)^2-4.5.2=-39\)

Vậy phương trình vô nghiệm.

9 tháng 3 2023

Phần b: 

Vậy pt có nghiệm kép:

\(x_1=x_2=\dfrac{-b}{2a}=\dfrac{-4}{2.4}=-\dfrac{1}{2}\)

19 tháng 1 2022

Ta có : x4+3x3+4x2+3x+1=0
⇔ ( x4 + x3 ) + ( 2x3 + 2x2 ) + ( 2x2 + 2x ) + ( x + 1 ) = 0

⇔ x3 ( x + 1 ) + 2x2 ( x + 1 ) + 2x ( x+1 ) + ( x + 1 ) =0

⇔  ( x + 1 ) ( x3 + 2x2 + 2x + 1 ) = 0

⇔ ( x + 1 ) [ ( x3 + 1 ) + ( 2x2 + 2x ) ] = 0

⇔ ( x + 1 ) [ (x + 1 ) ( x2 - x +1 ) + 2x ( x + 1 ) ] =0

⇔ ( x +1 ) ( x + 1 ) ( x2 + x +1 ) =0
⇒ \(\left[{}\begin{matrix}x+1=0\\x^{2^{ }}+x+1=0\end{matrix}\right.\)<=> \(\left[{}\begin{matrix}x=-1\\\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}=0\left(VoLy\right)\end{matrix}\right.\)

Vậy x = -1

19 tháng 1 2022

x4+3x3+4x2+3x+1=0

⇔(x4+2x3+x2)+(x3+2x2+1)+(x2+2x+1)=0

⇔x2(x2+2x+1)+x(x2​+2x+1)+(x2​+2x+1)=0

⇔x2(x+1)2+x(x+1)2+(x+1)2=0

⇔(x+1)2(x2+x+1)=0

Vì x2+x+1=x2+x+\(\dfrac{1}{4}\)+\(\dfrac{3}{4}\)=(x+\(\dfrac{1}{2}\))2+\(\dfrac{3}{4}\)>0 nên phương trình đã cho tương đương:

(x+1)2=0 ⇔(x+1)(x+1)=0 ⇔x=-1.

 

 

 

 

21 tháng 10 2021

272hay 27y2

21 tháng 10 2021

272

3 tháng 4 2019

Giải bài 4 trang 70 sgk Đại số 10 | Để học tốt Toán 10

Quy đồng và bỏ mẫu chung ta được:

Phương trình (1) ⇔ (3x + 4)(x + 2) – (x – 2) = 4 + 3(x2 – 4)

⇔ 3x2 + 6x + 4x + 8 – x + 2 = 4 + 3x2 – 12

⇔ 9x = –18

⇔ x = –2 (không thỏa mãn đkxđ)

Vậy phương trình vô nghiệm.

23 tháng 2 2023

a: =>(2x-5x-1)(2x+5x+1)=0

=>(-3x-1)(7x+1)=0

=>x=-1/3 hoặc x=-1/7

b: =>(5x-5)^2-(x+2)^2=0

=>(5x-5-x-2)(5x-5+x+2)=0

=>(4x-7)(6x-3)=0

=>x=1/2 hoặc x=7/4

c: =>(x^2+4x-1-x^2+3x-2)(x^2+4x-1+x^2-3x+2)=0

=>(7x-3)(2x^2+x+1)=0

=>7x-3=0

=>x=3/7

25 tháng 5 2019