K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 7 2021

Ta có:\(3x^2+6x+9=3\left(x^2+2x+3\right)=3\left[\left(x^2+2x+1\right)+2\right]=3\left[\left(x+1\right)^2+2\right]\)

\(=3\left(x+1\right)^2+6\)

Vì \(3\left(x+1\right)^2\ge0\forall x\Rightarrow3\left(x+1\right)^2+6\ge6\forall x\)

Dấu "=" xảy ra khi: \(3\left(x+1\right)^2=0\Leftrightarrow x=-1\)

Vậy GTNN của \(3x^2+6x+9\) là 6 khi x = -1.

8 tháng 7 2021

\(3x^{2}-6x+9\)

\(\Leftrightarrow\)\(3(x^{2}-2x+3)\)

\(\Leftrightarrow\)\(3(x^{2}-2x+1)+2\)

\(\Leftrightarrow\)\(3(x-1)^{2}+2\)

GTNN = 2. Dấu "=" xảy ra khi \(x=1\)

12 tháng 4 2022

f (x) = 3x2 + 2x3 - 6x - 2

bậc của đa thức là: 3

 

g(x) = 5x+ 9 - 2x3 - 3x2 - 4x + 2x3 - 2

g(x) = ( 5x2 - 3x) + ( 9 -2) + ( - 2x+ 2x) - 4x

g(x) = 2x2 + 7 - 4x

bậc của đa thức là : 2

3 tháng 10 2021

\(a,\Rightarrow x^3+9x^2+27x+27-9x^3-6x^2-x+8x^3+1-3x^2=54\\ \Rightarrow26x=26\Rightarrow x=1\\ b,\Rightarrow x^3-9x^2+27x-27-x^3+27+6x^2+12x+6+3x^2=-33\\ \Rightarrow39x=-39\Rightarrow x=-1\)

NV
12 tháng 4 2021

\(\Delta'=9-m-3=6-m>0\Rightarrow m< 6\)

Theo hệ thức Viet: \(x_1+x_2=6\Rightarrow\dfrac{x_1+x_2}{2}=3\)

\(\Rightarrow\) Luôn tồn tại ít nhất 1 trong 2 giá trị \(x_1;x_2\) không nhỏ hơn 3

Nếu \(x_2\ge3\Rightarrow\left|x_1-1\right|+3x_2\ge3x_2\ge9\)

Dấu "=" xảy ra khi và chỉ khi \(\left\{{}\begin{matrix}x_1-1=0\\x_2=3\end{matrix}\right.\) \(\Rightarrow x_1+x_2=4\) (ktm)

\(\Rightarrow x_2< 3\) và \(x_1\ge3\Rightarrow\left|x_1-1\right|=x_1-1\)

Do đó:

\(x_1-1+3x_2=9\Rightarrow x_1=10-3x_2\)

Thế vào \(x_1+x_2=6\Rightarrow10-2x_2=6\Rightarrow x_2=2\Rightarrow x_1=4\)

\(x_1x_2=m+3\Rightarrow m+3=8\Rightarrow m=5\)

3 tháng 1 2019

M = x4 - 6x3 + 10x2 - 6x + 9

M = (x2 - 6x + 9) + x4 - 6x3 + 9x2

M = (x - 3)2 + x2(x2 - 6x + 9)

M = (x - 3)2.(1 + x2)

Ta có:\(\left(x-3\right)^2\ge0;\left(1+x^2\right)\ge1\)

\(\Rightarrow M\ge1\)

Dấu 'x' xảy ra khi:

\(\left(x-3\right)^2=0\Leftrightarrow x-3=0\Leftrightarrow x=3\)

Vậy Mmin = 1 khi x = 3

Chúc bạn học tốt!!!

4 tháng 1 2019

Mình giải lại từ dòng số 6 nhé!!!

=> M = 0 

Dấu '=' xảy ra khi:

(x - 3)2 = 0 => x - 3 = 0

=> x = 3

Vậy Mmin = 0 khi x = 3

\(Q\left(x\right)=2x^2+6x-9-3x^2+6x+4=-x^2+12x-5\)

\(Q\left(0\right)=-5\)

Q(-2)=-4-24-5=-33

25 tháng 8 2018

Bài tập: Phương trình tích | Lý thuyết và Bài tập Toán 8 có đáp án

Chọn đáp án B

13 tháng 11 2018

\(5x^2-6x+9\)

\(=5\left(x^2-\frac{6}{5}x+\frac{9}{5}\right)\)

\(=5\left(x^2-2.x.\frac{3}{5}+\frac{9}{25}+\frac{36}{25}\right)\)

\(=\frac{35}{5}+5\left(x-\frac{3}{5}\right)^2\ge\frac{35}{5}\)

Min \(=\frac{35}{5}\Leftrightarrow x-\frac{3}{5}=0\Rightarrow x=\frac{3}{5}\)

2 tháng 8 2016

\(x^2-2x+1+4x^2-4x+1+7\)

\(\left(x-1\right)^2+\left(2x-1\right)^2+7\)

vì \(\left(x-1\right)^2>=0\)

\(\left(2x-1\right)^2>=0\)

=> \(\left(x-1\right)^2+\left(2x-1\right)^2+7>=7\)

dấu '=' xảy ra khi x=1

                          x=1/2

vậy gtnn của bt = 7 đạt được khi x=1 và x= 1/2

8 tháng 12 2021

MinC = 3/4 (khi x = -3/2)

9 tháng 12 2021

làm vầy làm mà gì nưa