tìm GTNN:
3x2+6x+9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\Rightarrow x^3+9x^2+27x+27-9x^3-6x^2-x+8x^3+1-3x^2=54\\ \Rightarrow26x=26\Rightarrow x=1\\ b,\Rightarrow x^3-9x^2+27x-27-x^3+27+6x^2+12x+6+3x^2=-33\\ \Rightarrow39x=-39\Rightarrow x=-1\)
\(\Delta'=9-m-3=6-m>0\Rightarrow m< 6\)
Theo hệ thức Viet: \(x_1+x_2=6\Rightarrow\dfrac{x_1+x_2}{2}=3\)
\(\Rightarrow\) Luôn tồn tại ít nhất 1 trong 2 giá trị \(x_1;x_2\) không nhỏ hơn 3
Nếu \(x_2\ge3\Rightarrow\left|x_1-1\right|+3x_2\ge3x_2\ge9\)
Dấu "=" xảy ra khi và chỉ khi \(\left\{{}\begin{matrix}x_1-1=0\\x_2=3\end{matrix}\right.\) \(\Rightarrow x_1+x_2=4\) (ktm)
\(\Rightarrow x_2< 3\) và \(x_1\ge3\Rightarrow\left|x_1-1\right|=x_1-1\)
Do đó:
\(x_1-1+3x_2=9\Rightarrow x_1=10-3x_2\)
Thế vào \(x_1+x_2=6\Rightarrow10-2x_2=6\Rightarrow x_2=2\Rightarrow x_1=4\)
\(x_1x_2=m+3\Rightarrow m+3=8\Rightarrow m=5\)
M = x4 - 6x3 + 10x2 - 6x + 9
M = (x2 - 6x + 9) + x4 - 6x3 + 9x2
M = (x - 3)2 + x2(x2 - 6x + 9)
M = (x - 3)2.(1 + x2)
Ta có:\(\left(x-3\right)^2\ge0;\left(1+x^2\right)\ge1\)
\(\Rightarrow M\ge1\)
Dấu 'x' xảy ra khi:
\(\left(x-3\right)^2=0\Leftrightarrow x-3=0\Leftrightarrow x=3\)
Vậy Mmin = 1 khi x = 3
Chúc bạn học tốt!!!
Mình giải lại từ dòng số 6 nhé!!!
=> M = 0
Dấu '=' xảy ra khi:
(x - 3)2 = 0 => x - 3 = 0
=> x = 3
Vậy Mmin = 0 khi x = 3
\(Q\left(x\right)=2x^2+6x-9-3x^2+6x+4=-x^2+12x-5\)
\(Q\left(0\right)=-5\)
Q(-2)=-4-24-5=-33
\(5x^2-6x+9\)
\(=5\left(x^2-\frac{6}{5}x+\frac{9}{5}\right)\)
\(=5\left(x^2-2.x.\frac{3}{5}+\frac{9}{25}+\frac{36}{25}\right)\)
\(=\frac{35}{5}+5\left(x-\frac{3}{5}\right)^2\ge\frac{35}{5}\)
Min \(=\frac{35}{5}\Leftrightarrow x-\frac{3}{5}=0\Rightarrow x=\frac{3}{5}\)
Ta có:\(3x^2+6x+9=3\left(x^2+2x+3\right)=3\left[\left(x^2+2x+1\right)+2\right]=3\left[\left(x+1\right)^2+2\right]\)
\(=3\left(x+1\right)^2+6\)
Vì \(3\left(x+1\right)^2\ge0\forall x\Rightarrow3\left(x+1\right)^2+6\ge6\forall x\)
Dấu "=" xảy ra khi: \(3\left(x+1\right)^2=0\Leftrightarrow x=-1\)
Vậy GTNN của \(3x^2+6x+9\) là 6 khi x = -1.
\(3x^{2}-6x+9\)
\(\Leftrightarrow\)\(3(x^{2}-2x+3)\)
\(\Leftrightarrow\)\(3(x^{2}-2x+1)+2\)
\(\Leftrightarrow\)\(3(x-1)^{2}+2\)
GTNN = 2. Dấu "=" xảy ra khi \(x=1\)