r ú t g ọ n
\(\sqrt{27.48\left(1-a^2\right)}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(=\sqrt{36^2\left(1-a\right)^2}=36.\left|1-a\right|=36\left(a-1\right)=36a-36\)
b/ \(=\frac{1}{a-b}.a^2\left|a-b\right|=\frac{1}{a-b}.a^2\left(a-b\right)=a^2\)
c/ \(=\frac{\sqrt{8+2\sqrt{7}}}{\sqrt{2}}+\frac{\sqrt{8-2\sqrt{7}}}{\sqrt{2}}=\frac{\sqrt{\left(\sqrt{7}+1\right)^2}+\sqrt{\left(\sqrt{7}-1\right)^2}}{\sqrt{2}}=\frac{\sqrt{7}+1+\sqrt{7}-1}{\sqrt{2}}=\frac{2\sqrt{7}}{\sqrt{2}}=\sqrt{14}\)
\(A=\sqrt{9.3.3.16\left(1-a^2\right)}=3.3.4.\left|1-a\right|=36\left(a-1\right)\)
\(B=\frac{1}{a-b}a^2.\left|a-b\right|=\frac{a^2\left(a-b\right)}{a-b}=a^2\)
\(C=\sqrt{5.45.a^2}-3a=\sqrt{5^2.3^2.a^2}-3a=15\left|a\right|-3a=15a-3a=12a\)
\(D=\left(3-a\right)^2-\sqrt{\frac{2.180}{10}a^2}=\left(3-a\right)^2-6\left|a\right|\)
a) \(\sqrt{27\cdot48\cdot\left(1-a\right)^2}\)
\(=3\sqrt{3}\cdot4\sqrt{3}\cdot\left|1-a\right|\)
\(=36\cdot\left(a-1\right)=36a-36\)
b) \(\dfrac{1}{a-b}\cdot\sqrt{a^4\left(a-b\right)^2}\)
\(=\dfrac{1}{a-b}\cdot\left(a-b\right)\cdot a^2\)
\(=a^2\)
a) Ta có: \(\sqrt{27\cdot48\left(1-a^2\right)}\)
\(=\sqrt{3^4\cdot4^2\cdot\left(1-a^2\right)}\)
\(=36\sqrt{1-a^2}\)
c) Ta có: \(\sqrt{5a}\cdot\sqrt{45a}-3a\)
\(=15a-3a=12a\)
b) Ta có: \(B=\dfrac{1}{a-b}\cdot\sqrt{a^4\cdot\left(a-b\right)^2}\)
\(=\dfrac{1}{a-b}\cdot a^2\cdot\left(a-b\right)\)
\(=a^2\)
d) Ta có: \(D=\left(3-a\right)^2-\sqrt{0.2}\cdot\sqrt{180a^2}\)
\(=a^2-6a+9-\sqrt{36a^2}\)
\(=a^2-6a+9-\left|6a\right|\)
\(=\left[{}\begin{matrix}a^2-6a+9-6a\left(a\ge0\right)\\a^2-6a+9+6a\left(a< 0\right)\end{matrix}\right.\)
\(=\left[{}\begin{matrix}a^2-12a+9\\a^2+9\end{matrix}\right.\)
Có 2 cách giải:
\(xy+2x+3y+5=0\)
\(\Leftrightarrow x\left(y+2\right)=-3y-5\)
\(\Leftrightarrow x=\frac{-3y-5}{y+2}\)
\(\Leftrightarrow x=\frac{-3y-6}{y+2}+\frac{1}{y+2}\)
\(\Leftrightarrow x=-3+\frac{1}{y+2}\)
Để \(x\in Z\)
Mà \(-3\in Z\)
\(\Rightarrow\frac{1}{y+2}\in Z\)
\(\Rightarrow1⋮\left(y+2\right)\)
\(\Rightarrow\orbr{\begin{cases}y+2=-1\\y+2=1\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}y=-3\\y=-1\end{cases}}\)
*Nếu y = -3 => x = - 4.
*Nếu y = -1 => x = -2.
\(a^2+45=b^2\)
=) \(b^2>45\)mà \(b\)là số nguyên tố =) \(b\)là số lẻ
=) \(b^2\)là số lẻ
=) \(a^2\)là số chẵn (Vì số chẵn cộng với số lẻ = số lẻ;cũng vì 45 là số lẻ)
=) \(a\)là số chẵn,mà a nguyên tố =) a = 2
=) \(2^2+45=b^2\)
=) \(4+45=b^2\)=) \(b^2=49\)
=) \(b^2=7^2\)=) \(b=7\)
Vậy a = 2, b = 7 ( đúng với điều kiện a+b = 2+7 = 9 < 20 )
\(\Rightarrow a^2-b^2=45\Leftrightarrow\left(a+b\right)\left(a-b\right)=45\)
\(a,b\) nguyên tố và giả sử \(a>b\)vì \(a+b< 20\)
\(a+b;a-b\)là ước của \(45\)ta xét các trường hợp
Vậy hai số nguyên tố là : 2,7
a)\(\sqrt{4\left(a-3\right)^2}=\sqrt{2^2\left(a-3\right)^2}=\sqrt{\left(2a-6\right)^2}=2a-6\)
b) \(\sqrt{9\left(b-2\right)^2}=\sqrt{3^2\left(b-2\right)^2}=\sqrt{\left[3\left(b-2\right)\right]^2}=3b-6\)
c) bạn xem lại đề
d)
\(\sqrt{5a}.\sqrt{45a}-3a=\sqrt{225a^2}-3a=\sqrt{\left(15a\right)^2}-3a=15a-3a=12a\)
e) \(\dfrac{\sqrt{48x^3}}{\sqrt{3x^5}}=\sqrt{\dfrac{48x^3}{3x^5}}=\sqrt{\dfrac{16}{x^2}}=\dfrac{\sqrt{16}}{\sqrt{x^2}}=\dfrac{4}{x}\)